When we set out to write a story on the best available estimates for AI’s energy and emissions burden, we knew there would be caveats and uncertainties to these numbers. But, we quickly discovered, the caveats are the story too. This story is a part of MIT Technology Review’s series “Power Hungry: AI and our energy future,” on the energy demands and carbon costs of the artificial-intelligence revolution. Measuring the energy used by an AI model is not like evaluating a car’s fuel economy or an appliance’s energy rating. There’s no agreed-upon method or public database of values. There are no regulators who enforce standards, and consumers don’t get the chance to evaluate one model against another. Despite the fact that billions of dollars are being poured into reshaping energy infrastructure around the needs of AI, no one has settled on a way to quantify AI’s energy usage. Worse, companies are generally unwilling to disclose their own piece of the puzzle. There are also limitations to estimating the emissions associated with that energy demand, because the grid hosts a complicated, ever-changing mix of energy sources. It’s a big mess, basically. So, that said, here are the many variables, assumptions, and caveats that we used to calculate the consequences of an AI query. (You can see the full results of our investigation here.) Measuring the energy a model uses Companies like OpenAI, dealing in “closed-source” models, generally offer access to their systems through an interface where you input a question and receive an answer. What happens in between—which data center in the world processes your request, the energy it takes to do so, and the carbon intensity of the energy sources used—remains a secret, knowable only to the companies. There are few incentives for them to release this information, and so far, most have not. That’s why, for our analysis, we looked at open-source models. They serve as a very imperfect proxy but the best one we have. (OpenAI, Microsoft, and Google declined to share specifics on how much energy their closed-source models use.) The best resources for measuring the energy consumption of open-source AI models are AI Energy Score, ML.Energy, and MLPerf Power. The team behind ML.Energy assisted us with our text and image model calculations, and the team behind AI Energy Score helped with our video model calculations. Text models AI models use up energy in two phases: when they initially learn from vast amounts of data, called training, and when they respond to queries, called inference. When ChatGPT was launched a few years ago, training was the focus, as tech companies raced to keep up and build ever-bigger models. But now, inference is where the most energy is used. The most accurate way to understand how much energy an AI model uses in the inference stage is to directly measure the amount of electricity used by the server handling the request. Servers contain all sorts of components—powerful chips called GPUs that do the bulk of the computing, other chips called CPUs, fans to keep everything cool, and more. Researchers typically measure the amount of power the GPU draws and estimate the rest (more on this shortly). To do this, we turned to PhD candidate Jae-Won Chung and associate professor Mosharaf Chowdhury at the University of Michigan, who lead the ML.Energy project. Once we collected figures for different models’ GPU energy use from their team, we had to estimate how much energy is used for other processes, like cooling. We examined research literature, including a 2024 paper from Microsoft, to understand how much of a server’s total energy demand GPUs are responsible for. It turns out to be about half. So we took the team’s GPU energy estimate and doubled it to get a sense of total energy demands. The ML.Energy team uses a batch of 500 prompts from a larger dataset to test models. The hardware is kept the same throughout; the GPU is a popular Nvidia chip called the H100. We decided to focus on models of three sizes from the Meta Llama family: small (8 billion parameters), medium (70 billion), and large (405 billion). We also identified a selection of prompts to test. We compared these with the averages for the entire batch of 500 prompts. Image models Stable Diffusion 3 from Stability AI is one of the most commonly used open-source image-generating models, so we made it our focus. Though we tested multiple sizes of the text-based Meta Llama model, we focused on one of the most popular sizes of Stable Diffusion 3, with 2 billion parameters. The team uses a dataset of example prompts to test a model’s energy requirements. Though the energy used by large language models is determined partially by the prompt, this isn’t true for diffusion models. Diffusion models can be programmed to go through a prescribed number of “denoising steps” when they generate an image or video, with each step being an iteration of the algorithm that adds more detail to the image. For a given step count and model, all images generated have the same energy footprint. The more steps, the higher quality the end result—but the more energy used. Numbers of steps vary by model and application, but 25 is pretty common, and that’s what we used for our standard quality. For higher quality, we used 50 steps. We mentioned that GPUs are usually responsible for about half of the energy demands of large language model requests. There is not sufficient research to know how this changes for diffusion models that generate images and videos. In the absence of a better estimate, and after consulting with researchers, we opted to stick with this 50% rule of thumb for images and videos too. Video models Chung and Chowdhury do test video models, but only ones that generate short, low-quality GIFs. We don’t think the videos these models produce mirror the fidelity of the AI-generated video that many people are used to seeing. Instead, we turned to Sasha Luccioni,