YouZum

新闻

AI, Committee, 新闻, Uncategorized

Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents

arXiv:2507.22925v1 Announce Type: new Abstract: Long-term memory is one of the key factors influencing the reasoning capabilities of Large Language Model Agents (LLM Agents). Incorporating a memory mechanism that effectively integrates past interactions can significantly enhance decision-making and contextual coherence of LLM Agents. While recent works have made progress in memory storage and retrieval, such as encoding memory into dense vectors for similarity-based search or organizing knowledge in the form of graph, these approaches often fall short in structured memory organization and efficient retrieval. To address these limitations, we propose a Hierarchical Memory (H-MEM) architecture for LLM Agents that organizes and updates memory in a multi-level fashion based on the degree of semantic abstraction. Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer. During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations. We evaluate our method on five task settings from the LoCoMo dataset. Experimental results show that our approach consistently outperforms five baseline methods, demonstrating its effectiveness in long-term dialogue scenarios.

Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents Read Post »

AI, Committee, 新闻, Uncategorized

Using Sentiment Analysis to Investigate Peer Feedback by Native and Non-Native English Speakers

arXiv:2507.22924v1 Announce Type: new Abstract: Graduate-level CS programs in the U.S. increasingly enroll international students, with 60.2 percent of master’s degrees in 2023 awarded to non-U.S. students. Many of these students take online courses, where peer feedback is used to engage students and improve pedagogy in a scalable manner. Since these courses are conducted in English, many students study in a language other than their first. This paper examines how native versus non-native English speaker status affects three metrics of peer feedback experience in online U.S.-based computing courses. Using the Twitter-roBERTa-based model, we analyze the sentiment of peer reviews written by and to a random sample of 500 students. We then relate sentiment scores and peer feedback ratings to students’ language background. Results show that native English speakers rate feedback less favorably, while non-native speakers write more positively but receive less positive sentiment in return. When controlling for sex and age, significant interactions emerge, suggesting that language background plays a modest but complex role in shaping peer feedback experiences.

Using Sentiment Analysis to Investigate Peer Feedback by Native and Non-Native English Speakers Read Post »

AI, Committee, 新闻, Uncategorized

Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models

arXiv:2507.23386v1 Announce Type: new Abstract: Decoder-only large language models (LLMs) are increasingly used to build embedding models that effectively encode the semantic information of natural language texts into dense vector representations for various embedding tasks. However, many existing methods primarily focus on removing the causal attention mask in LLMs to enable bidirectional attention, potentially undermining the model’s ability to extract semantic information acquired during pretraining. Additionally, leading unidirectional approaches often rely on extra input text to overcome the inherent limitations of causal attention, inevitably increasing computational costs. In this work, we propose Causal2Vec, a general-purpose embedding model tailored to enhance the performance of decoder-only LLMs without altering their original architectures or introducing significant computational overhead. Specifically, we first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token, which is then prepended to the LLM’s input sequence, allowing each token to capture contextualized information even without attending to future tokens. Furthermore, to mitigate the recency bias introduced by last-token pooling and help LLMs better leverage the semantic information encoded in the Contextual token, we concatenate the last hidden states of Contextual and EOS tokens as the final text embedding. In practice, Causal2Vec achieves state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB) among models trained solely on publicly available retrieval datasets, while reducing the required sequence length by up to 85% and inference time by up to 82% compared to best-performing methods.

Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models Read Post »

AI, Committee, 新闻, Uncategorized

TransEvalnia: A Prompting-Based System for Fine-Grained, Human-Aligned Translation Evaluation Using LLMs

Translation systems powered by LLMs have become so advanced that they can outperform human translators in some cases. As LLMs improve, especially in complex tasks such as document-level or literary translation, it becomes increasingly challenging to make further progress and to accurately evaluate that progress. Traditional automated metrics, such as BLEU, are still used but fail to explain why a score is given. With translation quality reaching near-human levels, users require evaluations that extend beyond numerical metrics, providing reasoning across key dimensions, such as accuracy, terminology, and audience suitability. This transparency enables users to assess evaluations, identify errors, and make more informed decisions.  While BLEU has long been the standard for evaluating machine translation (MT), its usefulness is fading as modern systems now rival or outperform human translators. Newer metrics, such as BLEURT, COMET, and MetricX, fine-tune powerful language models to assess translation quality more accurately. Large models, such as GPT and PaLM2, can now offer zero-shot or structured evaluations, even generating MQM-style feedback. Techniques such as pairwise comparison have also enhanced alignment with human judgments. Recent studies have shown that asking models to explain their choices improves decision quality; yet, such rationale-based methods are still underutilized in MT evaluation, despite their growing potential.  Researchers at Sakana.ai have developed TransEvalnia, a translation evaluation and ranking system that uses prompting-based reasoning to assess translation quality. It provides detailed feedback using selected MQM dimensions, ranks translations, and assigns scores on a 5-point Likert scale, including an overall rating. The system performs competitively with, or even better than, the leading MT-Ranker model across several language pairs and tasks, including English-Japanese, Chinese-English, and more. Tested with LLMs like Claude 3.5 and Qwen-2.5, its judgments aligned well with human ratings. The team also tackled position bias and has released all data, reasoning outputs, and code for public use.  The methodology centers on evaluating translations across key quality aspects, including accuracy, terminology, audience suitability, and clarity. For poetic texts like haikus, emotional tone replaces standard grammar checks. Translations are broken down and assessed span by span, scored on a 1–5 scale, and then ranked. To reduce bias, the study compares three evaluation strategies: single-step, two-step, and a more reliable interleaving method. A “no-reasoning” method is also tested but lacks transparency and is prone to bias. Finally, human experts reviewed selected translations to compare their judgments with those of the system, offering insights into its alignment with professional standards.  The researchers evaluated translation ranking systems using datasets with human scores, comparing their TransEvalnia models (Qwen and Sonnet) with MT-Ranker, COMET-22/23, XCOMET-XXL, and MetricX-XXL. On WMT-2024 en-es, MT-Ranker performed best, likely due to rich training data. However, in most other datasets, TransEvalnia matched or outperformed MT-Ranker; for example, Qwen’s no-reasoning approach led to a win on WMT-2023 en-de. Position bias was analyzed using inconsistency scores, where interleaved methods often had the lowest bias (e.g., 1.04 on Hard en-ja). Human raters gave Sonnet the highest overall Likert scores (4.37–4.61), with Sonnet’s evaluations correlating well with human judgment (Spearman’s R~0.51–0.54).  In conclusion, TransEvalnia is a prompting-based system for evaluating and ranking translations using LLMs like Claude 3.5 Sonnet and Qwen. The system provides detailed scores across key quality dimensions, inspired by the MQM framework, and selects the better translation among options. It often matches or outperforms MT-Ranker on several WMT language pairs, although MetricX-XXL leads on WMT due to fine-tuning. Human raters found Sonnet’s outputs to be reliable, and scores showed a strong correlation with human judgments. Fine-tuning Qwen improved performance notably. The team also explored solutions to position bias, a persistent challenge in ranking systems, and shared all evaluation data and code.  Check out the Paper here. Feel free to check our Tutorials page on AI Agent and Agentic AI for various applications. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. The post TransEvalnia: A Prompting-Based System for Fine-Grained, Human-Aligned Translation Evaluation Using LLMs appeared first on MarkTechPost.

TransEvalnia: A Prompting-Based System for Fine-Grained, Human-Aligned Translation Evaluation Using LLMs Read Post »

AI, Committee, 新闻, Uncategorized

Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents

Deep Research (DR) agents have rapidly gained popularity in both research and industry, thanks to recent progress in LLMs. However, most popular public DR agents are not designed with human thinking and writing processes in mind. They often lack structured steps that support human researchers, such as drafting, searching, and using feedback. Current DR agents compile test-time algorithms and various tools without cohesive frameworks, highlighting the critical need for purpose-built frameworks that can match or excel human research capabilities. The absence of human-inspired cognitive processes in current methods creates a gap between how humans do research and how AI agents handle complex research tasks. Existing works, such as test-time scaling, utilize iterative refinement algorithms, debate mechanisms, tournaments for hypothesis ranking, and self-critique systems to generate research proposals. Multi-agent systems utilize planners, coordinators, researchers, and reporters to produce detailed responses, while some frameworks enable human co-pilot modes for feedback integration. Agent tuning approaches focus on training through multitask learning objectives, component-wise supervised fine-tuning, and reinforcement learning to improve search and browsing capabilities. LLM diffusion models attempt to break autoregressive sampling assumptions by generating complete noisy drafts and iteratively denoising tokens for high-quality outputs. Researchers at Google introduced Test-Time Diffusion Deep Researcher (TTD-DR), inspired by the iterative nature of human research through repeated cycles of searching, thinking, and refining. It conceptualizes research report generation as a diffusion process, starting with a draft that serves as an updated outline and evolving foundation to guide research direction. The draft undergoes iterative refinement through a “denoising” process, dynamically informed by a retrieval mechanism that incorporates external information at each step. This draft-centric design makes report writing more timely and coherent while reducing information loss during iterative search processes. TTD-DR achieves state-of-the-art results on benchmarks that require intensive search and multi-hop reasoning. The TTD-DR framework addresses limitations of existing DR agents that employ linear or parallelized processes. The proposed backbone DR agent contains three major stages: Research Plan Generation, Iterative Search and Synthesis, and Final Report Generation, each containing unit LLM agents, workflows, and agent states. The agent utilizes self-evolving algorithms to enhance the performance of each stage, helping it to find and preserve high-quality context. The proposed algorithm, inspired by recent self-evolution work, is implemented in a parallel workflow along with sequential and loop workflows. This algorithm can be applied to all three stages of agents to improve overall output quality. In side-by-side comparisons with OpenAI Deep Research, TTD-DR achieves 69.1% and 74.5% win rates for long-form research report generation tasks, while outperforming by 4.8%, 7.7%, and 1.7% on three research datasets with short-form ground-truth answers. It shows strong performance in Helpfulness and Comprehensiveness auto-rater scores, especially on LongForm Research datasets. Moreover, the self-evolution algorithm achieves 60.9% and 59.8% win rates against OpenAI Deep Research on LongForm Research and DeepConsult. The correctness score shows an enhancement of 1.5% and 2.8% on HLE datasets, though the performance on GAIA remains 4.4% below OpenAI DR. The incorporation of Diffusion with Retrieval leads to substantial gains over OpenAI Deep Research across all benchmarks. In conclusion, Google presents TTD-DR, a method that addresses fundamental limitations through human-inspired cognitive design. The framework’s approach conceptualizes research report generation as a diffusion process, utilizing an updatable draft skeleton that guides research direction. TTD-DR, enhanced by self-evolutionary algorithms applied to each workflow component, ensures high-quality context generation throughout the research process. Moreover, evaluations demonstrate that TTD-DR’s state-of-the-art performance across various benchmarks that require intensive search and multi-hop reasoning, with superior results in both comprehensive long-form research reports and concise multi-hop reasoning tasks. Check out the Paper here. Feel free to check our Tutorials page on AI Agent and Agentic AI for various applications. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. The post Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents appeared first on MarkTechPost.

Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents Read Post »

AI, Committee, 新闻, Uncategorized

Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors

arXiv:2507.22367v1 Announce Type: new Abstract: Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called textit{textbf{Traits Run Deep}}. It employs textit{textbf{psychology-informed prompts}} to elicit high-level personality-relevant semantic representations. Besides, it devises a textit{textbf{Text-Centric Trait Fusion Network}} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method’s superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.

Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors Read Post »

AI, Committee, 新闻, Uncategorized

Co-AttenDWG: Co-Attentive Dimension-Wise Gating and Expert Fusion for Multi-Modal Offensive Content Detection

arXiv:2505.19010v2 Announce Type: replace-cross Abstract: Multi-modal learning has emerged as a crucial research direction, as integrating textual and visual information can substantially enhance performance in tasks such as classification, retrieval, and scene understanding. Despite advances with large pre-trained models, existing approaches often suffer from insufficient cross-modal interactions and rigid fusion strategies, failing to fully harness the complementary strengths of different modalities. To address these limitations, we propose Co-AttenDWG, co-attention with dimension-wise gating, and expert fusion. Our approach first projects textual and visual features into a shared embedding space, where a dedicated co-attention mechanism enables simultaneous, fine-grained interactions between modalities. This is further strengthened by a dimension-wise gating network, which adaptively modulates feature contributions at the channel level to emphasize salient information. In parallel, dual-path encoders independently refine modality-specific representations, while an additional cross-attention layer aligns the modalities further. The resulting features are aggregated via an expert fusion module that integrates learned gating and self-attention, yielding a robust unified representation. Experimental results on the MIMIC and SemEval Memotion 1.0 datasets show that Co-AttenDWG achieves state-of-the-art performance and superior cross-modal alignment, highlighting its effectiveness for diverse multi-modal applications.

Co-AttenDWG: Co-Attentive Dimension-Wise Gating and Expert Fusion for Multi-Modal Offensive Content Detection Read Post »

AI, Committee, 新闻, Uncategorized

QE4PE: Word-level Quality Estimation for Human Post-Editing

arXiv:2503.03044v2 Announce Type: replace Abstract: Word-level quality estimation (QE) methods aim to detect erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. In this study, we investigate the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated from behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors’ speed are critical factors in determining highlights’ effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows.

QE4PE: Word-level Quality Estimation for Human Post-Editing Read Post »

AI, Committee, 新闻, Uncategorized

D’ej`a Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation

arXiv:2504.11829v3 Announce Type: replace Abstract: Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.

D’ej`a Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation Read Post »

AI, Committee, 新闻, Uncategorized

Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning

arXiv:2502.13820v3 Announce Type: replace-cross Abstract: Synthetic verification techniques such as generating test cases and reward modelling are common ways to enhance the coding capabilities of large language models (LLM) beyond predefined tests. Additionally, code verification has recently found great success as a critical component in improving reasoning capability of LLMs via reinforcement learning. In this paper, we propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. We also propose multiple metrics to measure different aspects of the synthetic verifiers with the proposed benchmarks. By employing the proposed approach, we release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs. Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.

Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning Read Post »

zh_CN