YouZum

Committee

AI, Committee, Actualités, Uncategorized

No Encore: Unlearning as Opt-Out in Music Generation

arXiv:2509.06277v1 Announce Type: new Abstract: AI music generation is rapidly emerging in the creative industries, enabling intuitive music generation from textual descriptions. However, these systems pose risks in exploitation of copyrighted creations, raising ethical and legal concerns. In this paper, we present preliminary results on the first application of machine unlearning techniques from an ongoing research to prevent inadvertent usage of creative content. Particularly, we explore existing methods in machine unlearning to a pre-trained Text-to-Music (TTM) baseline and analyze their efficacy in unlearning pre-trained datasets without harming model performance. Through our experiments, we provide insights into the challenges of applying unlearning in music generation, offering a foundational analysis for future works on the application of unlearning for music generative models.

No Encore: Unlearning as Opt-Out in Music Generation Lire l’article »

AI, Committee, Actualités, Uncategorized

Support or Refute: Analyzing the Stance of Evidence to Detect Out-of-Context Mis- and Disinformation

arXiv:2311.01766v5 Announce Type: replace Abstract: Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy. The source code and checkpoints are publicly available at https://github.com/yx3266/SEN.

Support or Refute: Analyzing the Stance of Evidence to Detect Out-of-Context Mis- and Disinformation Lire l’article »

AI, Committee, Actualités, Uncategorized

Automatic Prompt Optimization with Prompt Distillation

arXiv:2508.18992v2 Announce Type: replace Abstract: Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt — a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.

Automatic Prompt Optimization with Prompt Distillation Lire l’article »

AI, Committee, Actualités, Uncategorized

Anchoring Refusal Direction: Mitigating Safety Risks in Tuning via Projection Constraint

arXiv:2509.06795v1 Announce Type: new Abstract: Instruction Fine-Tuning (IFT) has been widely adopted as an effective post-training strategy to enhance various abilities of Large Language Models (LLMs). However, prior studies have shown that IFT can significantly compromise LLMs’ safety, particularly their ability to refuse malicious instructions, raising significant concerns. Recent research into the internal mechanisms of LLMs has identified the refusal direction (r-direction) in the hidden states, which plays a pivotal role in governing refusal behavior. Building on this insight, our study reveals that the r-direction tends to drift during training, which we identify as one of the causes of the associated safety risks. To mitigate such drift, our proposed ProCon method introduces a projection-constrained loss term that regularizes the projection magnitude of each training sample’s hidden state onto the r-direction. Our initial analysis shows that applying an appropriate constraint can effectively mitigate the refusal direction drift and associated safety risks, but remains limited by overall performance barriers. To overcome this barrier, informed by our observation of early-stage sharp drift and a data-driven perspective, we introduce a warm-up strategy that emphasizes early-stage strong constraints and broaden the data distribution to strengthen constraint signals, leading to an enhanced ProCon method. Experimental results under various datasets, scenarios, and LLMs demonstrate that our method can significantly mitigate safety risks posed by IFT while preserving task performance gains. Even compared with strong baselines, our method consistently delivers superior overall performance. Crucially, our analysis indicates that ProCon can contribute to stabilizing the r-direction during training, while such an interpretability-driven exploration of LLMs’ internal mechanisms lays a solid foundation for future safety research.

Anchoring Refusal Direction: Mitigating Safety Risks in Tuning via Projection Constraint Lire l’article »

AI, Committee, Actualités, Uncategorized

Antidistillation Sampling

arXiv:2504.13146v4 Announce Type: replace-cross Abstract: Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model’s next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model’s practical utility. For further details, see https://antidistillation.com.

Antidistillation Sampling Lire l’article »

AI, Committee, Actualités, Uncategorized

Energy Landscapes Enable Reliable Abstention in Retrieval-Augmented Large Language Models for Healthcare

arXiv:2509.04482v1 Announce Type: new Abstract: Reliable abstention is critical for retrieval-augmented generation (RAG) systems, particularly in safety-critical domains such as women’s health, where incorrect answers can lead to harm. We present an energy-based model (EBM) that learns a smooth energy landscape over a dense semantic corpus of 2.6M guideline-derived questions, enabling the system to decide when to generate or abstain. We benchmark the EBM against a calibrated softmax baseline and a k-nearest neighbour (kNN) density heuristic across both easy and hard abstention splits, where hard cases are semantically challenging near-distribution queries. The EBM achieves superior abstention performance abstention on semantically hard cases, reaching AUROC 0.961 versus 0.950 for softmax, while also reducing FPR@95 (0.235 vs 0.331). On easy negatives, performance is comparable across methods, but the EBM’s advantage becomes most pronounced in safety-critical hard distributions. A comprehensive ablation with controlled negative sampling and fair data exposure shows that robustness stems primarily from the energy scoring head, while the inclusion or exclusion of specific negative types (hard, easy, mixed) sharpens decision boundaries but is not essential for generalisation to hard cases. These results demonstrate that energy-based abstention scoring offers a more reliable confidence signal than probability-based softmax confidence, providing a scalable and interpretable foundation for safe RAG systems.

Energy Landscapes Enable Reliable Abstention in Retrieval-Augmented Large Language Models for Healthcare Lire l’article »

AI, Committee, Actualités, Uncategorized

Research on Multi-hop Inference Optimization of LLM Based on MQUAKE Framework

arXiv:2509.04770v1 Announce Type: new Abstract: Accurately answering complex questions has consistently been a significant challenge for Large Language Models (LLMs). To address this, this paper proposes a multi-hop question decomposition method for complex questions, building upon research within the MQUAKE framework. Utilizing the LLAMA3 model, we systematically investigate the impact of multi-hop question decomposition within knowledge graphs on model comprehension and reasoning accuracy, both before and after model training. In our experiments, we systematically partitioned and converted the MQUAKE-T dataset into two distinct formats: a single-hop dataset designed for directly answering complex questions, and a multi-hop dataset constructed using the multi-hop question decomposition method. We then fine-tuned the LLAMA3 model on these datasets and conducted inference tests. Our results demonstrate that, without fine-tuning the LLM, the prediction performance based on the multi-hop question decomposition method significantly outperforms the method of directly answering complex questions. After fine-tuning using the LoRA (Low-Rank Adaptation) method, the performance of both approaches improved compared to the untrained baseline. Crucially, the method utilizing multi-hop decomposition consistently maintained its superiority. These findings validate the effectiveness of the multi-hop decomposition method both before and after training, demonstrating its capability to effectively enhance the LLM’s ability to answer complex questions.

Research on Multi-hop Inference Optimization of LLM Based on MQUAKE Framework Lire l’article »

AI, Committee, Actualités, Uncategorized

DecMetrics: Structured Claim Decomposition Scoring for Factually Consistent LLM Outputs

arXiv:2509.04483v1 Announce Type: new Abstract: Claim decomposition plays a crucial role in the fact-checking process by breaking down complex claims into simpler atomic components and identifying their unfactual elements. Despite its importance, current research primarily focuses on generative methods for decomposition, with insufficient emphasis on evaluating the quality of these decomposed atomic claims. To bridge this gap, we introduce textbf{DecMetrics}, which comprises three new metrics: texttt{COMPLETENESS}, texttt{CORRECTNESS}, and texttt{SEMANTIC ENTROPY}, designed to automatically assess the quality of claims produced by decomposition models. Utilizing these metrics, we develop a lightweight claim decomposition model, optimizing its performance through the integration of these metrics as a reward function. Through automatic evaluation, our approach aims to set a benchmark for claim decomposition, enhancing both the reliability and effectiveness of fact-checking systems.

DecMetrics: Structured Claim Decomposition Scoring for Factually Consistent LLM Outputs Lire l’article »

AI, Committee, Actualités, Uncategorized

Entropy2Vec: Crosslingual Language Modeling Entropy as End-to-End Learnable Language Representations

arXiv:2509.05060v1 Announce Type: new Abstract: We introduce Entropy2Vec, a novel framework for deriving cross-lingual language representations by leveraging the entropy of monolingual language models. Unlike traditional typological inventories that suffer from feature sparsity and static snapshots, Entropy2Vec uses the inherent uncertainty in language models to capture typological relationships between languages. By training a language model on a single language, we hypothesize that the entropy of its predictions reflects its structural similarity to other languages: Low entropy indicates high similarity, while high entropy suggests greater divergence. This approach yields dense, non-sparse language embeddings that are adaptable to different timeframes and free from missing values. Empirical evaluations demonstrate that Entropy2Vec embeddings align with established typological categories and achieved competitive performance in downstream multilingual NLP tasks, such as those addressed by the LinguAlchemy framework.

Entropy2Vec: Crosslingual Language Modeling Entropy as End-to-End Learnable Language Representations Lire l’article »

AI, Committee, Actualités, Uncategorized

Language-Driven Hierarchical Task Structures as Explicit World Models for Multi-Agent Learning

arXiv:2509.04731v1 Announce Type: cross Abstract: The convergence of Language models, Agent models, and World models represents a critical frontier for artificial intelligence. While recent progress has focused on scaling Language and Agent models, the development of sophisticated, explicit World Models remains a key bottleneck, particularly for complex, long-horizon multi-agent tasks. In domains such as robotic soccer, agents trained via standard reinforcement learning in high-fidelity but structurally-flat simulators often fail due to intractable exploration spaces and sparse rewards. This position paper argues that the next frontier in developing capable agents lies in creating environments that possess an explicit, hierarchical World Model. We contend that this is best achieved through hierarchical scaffolding, where complex goals are decomposed into structured, manageable subgoals. Drawing evidence from a systematic review of 2024 research in multi-agent soccer, we identify a clear and decisive trend towards integrating symbolic and hierarchical methods with multi-agent reinforcement learning (MARL). These approaches implicitly or explicitly construct a task-based world model to guide agent learning. We then propose a paradigm shift: leveraging Large Language Models to dynamically generate this hierarchical scaffold, effectively using language to structure the World Model on the fly. This language-driven world model provides an intrinsic curriculum, dense and meaningful learning signals, and a framework for compositional learning, enabling Agent Models to acquire sophisticated, strategic behaviors with far greater sample efficiency. By building environments with explicit, language-configurable task layers, we can bridge the gap between low-level reactive behaviors and high-level strategic team play, creating a powerful and generalizable framework for training the next generation of intelligent agents.

Language-Driven Hierarchical Task Structures as Explicit World Models for Multi-Agent Learning Lire l’article »

We use cookies to improve your experience and performance on our website. You can learn more at Politique de confidentialité and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
fr_FR