YouZum

Uncategorized

AI, Committee, News, Uncategorized

SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model

arXiv:2507.02822v1 Announce Type: new Abstract: With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between “thinking” (high reasoning) and “non-thinking” (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.

SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model Read Post »

AI, Committee, News, Uncategorized

Batch-Max: Higher LLM Throughput using Larger Batch Sizes and KV Cache Compression

arXiv:2412.05693v3 Announce Type: replace Abstract: Several works have developed eviction policies to remove key-value (KV) pairs from the KV cache for more efficient inference. The focus has been on compressing the KV cache after the input prompt has been processed for faster token generation. In settings with limited GPU memory, and when the input context is longer than the generation length, we show that by also compressing the KV cache during the input processing phase, larger batch sizes can be used resulting in significantly higher throughput while still maintaining the original model’s accuracy.

Batch-Max: Higher LLM Throughput using Larger Batch Sizes and KV Cache Compression Read Post »

AI, Committee, News, Uncategorized

Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning

arXiv:2311.08010v3 Announce Type: replace Abstract: Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.

Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning Read Post »

AI, Committee, News, Uncategorized

Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers

arXiv:2503.00958v2 Announce Type: replace Abstract: We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model’s different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.

Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers Read Post »

AI, Committee, News, Uncategorized

Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading

arXiv:2507.01431v1 Announce Type: cross Abstract: Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.

Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading Read Post »

AI, Committee, News, Uncategorized

MiCoTA: Bridging the Learnability Gap with Intermediate CoT and Teacher Assistants

arXiv:2507.01887v1 Announce Type: new Abstract: Large language models (LLMs) excel at reasoning tasks requiring long thought sequences for planning, reflection, and refinement. However, their substantial model size and high computational demands are impractical for widespread deployment. Yet, small language models (SLMs) often struggle to learn long-form CoT reasoning due to their limited capacity, a phenomenon we refer to as the “SLMs Learnability Gap”. To address this, we introduce textbf{Mi}d-textbf{Co}T textbf{T}eacher textbf{A}ssistant Distillation (MiCoTAl), a framework for improving long CoT distillation for SLMs. MiCoTA employs intermediate-sized models as teacher assistants and utilizes intermediate-length CoT sequences to bridge both the capacity and reasoning length gaps. Our experiments on downstream tasks demonstrate that although SLMs distilled from large teachers can perform poorly, by applying MiCoTA, they achieve significant improvements in reasoning performance. Specifically, Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct achieve an improvement of 3.47 and 3.93 respectively on average score on AIME2024, AMC, Olympiad, MATH-500 and GSM8K benchmarks. To better understand the mechanism behind MiCoTA, we perform a quantitative experiment demonstrating that our method produces data more closely aligned with base SLM distributions. Our insights pave the way for future research into long-CoT data distillation for SLMs.

MiCoTA: Bridging the Learnability Gap with Intermediate CoT and Teacher Assistants Read Post »

AI, Committee, News, Uncategorized

Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models

arXiv:2505.19121v2 Announce Type: replace Abstract: Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (MSQAD), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.

Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models Read Post »

AI, Committee, News, Uncategorized

Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment

arXiv:2307.02075v4 Announce Type: replace-cross Abstract: Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.

Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment Read Post »

AI, Committee, News, Uncategorized

T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning

arXiv:2507.01597v1 Announce Type: cross Abstract: Temporal Knowledge Graph (TKG) is an efficient method for describing the dynamic development of facts along a timeline. Most research on TKG reasoning (TKGR) focuses on modelling the repetition of global facts and designing patterns of local historical facts. However, they face two significant challenges: inadequate modeling of the event distribution shift between training and test samples, and reliance on random entity substitution for generating negative samples, which often results in low-quality sampling. To this end, we propose a novel distributional feature modeling approach for training TKGR models, Test-Time Training-guided Distribution shift Modelling (T3DM), to adjust the model based on distribution shift and ensure the global consistency of model reasoning. In addition, we design a negative-sampling strategy to generate higher-quality negative quadruples based on adversarial training. Extensive experiments show that T3DM provides better and more robust results than the state-of-the-art baselines in most cases.

T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning Read Post »

AI, Committee, News, Uncategorized

Benchmarking the Pedagogical Knowledge of Large Language Models

arXiv:2506.18710v3 Announce Type: replace Abstract: Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI’s knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models’ understanding of pedagogy – the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models’ capacities to understand pedagogical concepts, respond appropriately to learners’ needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.

Benchmarking the Pedagogical Knowledge of Large Language Models Read Post »

en_US