YouZum

Reading Between the Lines: Towards Reliable Black-box LLM Fingerprinting via Zeroth-order Gradient Estimation

arXiv:2510.06605v2 Announce Type: replace-cross
Abstract: The substantial investment required to develop Large Language Models (LLMs) makes them valuable intellectual property, raising significant concerns about copyright protection. LLM fingerprinting has emerged as a key technique to address this, which aims to verify a model’s origin by extracting an intrinsic, unique signature (a “fingerprint”) and comparing it to that of a source model to identify illicit copies. However, existing black-box fingerprinting methods often fail to generate distinctive LLM fingerprints. This ineffectiveness arises because black-box methods typically rely on model outputs, which lose critical information about the model’s unique parameters due to the usage of non-linear functions. To address this, we first leverage Fisher Information Theory to formally demonstrate that the gradient of the model’s input is a more informative feature for fingerprinting than the output. Based on this insight, we propose ZeroPrint, a novel method that approximates these information-rich gradients in a black-box setting using zeroth-order estimation. ZeroPrint overcomes the challenge of applying this to discrete text by simulating input perturbations via semantic-preserving word substitutions. This operation allows ZeroPrint to estimate the model’s Jacobian matrix as a unique fingerprint. Experiments on the standard benchmark show ZeroPrint achieves a state-of-the-art effectiveness and robustness, significantly outperforming existing black-box methods.

We use cookies to improve your experience and performance on our website. You can learn more at Privacy Policy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
en_US