YouZum

Generative AI for FFRDCs

arXiv:2509.21040v1 Announce Type: new
Abstract: Federally funded research and development centers (FFRDCs) face text-heavy workloads, from policy documents to scientific and engineering papers, that are slow to analyze manually. We show how large language models can accelerate summarization, classification, extraction, and sense-making with only a few input-output examples. To enable use in sensitive government contexts, we apply OnPrem$.$LLM, an open-source framework for secure and flexible application of generative AI. Case studies on defense policy documents and scientific corpora, including the National Defense Authorization Act (NDAA) and National Science Foundation (NSF) Awards, demonstrate how this approach enhances oversight and strategic analysis while maintaining auditability and data sovereignty.

We use cookies to improve your experience and performance on our website. You can learn more at Privacy Policy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
en_US