YouZum

Comparing Apples to Oranges: A Dataset & Analysis of LLM Humour Understanding from Traditional Puns to Topical Jokes

arXiv:2507.13335v2 Announce Type: replace
Abstract: Humour, as a complex language form, is derived from myriad aspects of life. Whilst existing work on computational humour has focussed almost exclusively on short pun-based jokes, we investigate whether the ability of Large Language Models (LLMs) to explain humour depends on the particular form. We compare models’ joke explanation abilities from simple puns to complex topical humour that requires esoteric knowledge of real-world entities and events. To this end, we curate a dataset of 600 jokes across 4 joke types and manually write high-quality explanations. These jokes include heterographic and homographic puns, contemporary internet humour, and topical jokes. Using this dataset, we compare the zero-shot abilities of a range of LLMs to accurately and comprehensively explain jokes of different types, identifying key research gaps in the task of humour explanation. We find that none of the tested models (including reasoning models) are capable of reliably generating adequate explanations of all joke types, further highlighting the narrow focus of most existing works on overly simple joke forms.

We use cookies to improve your experience and performance on our website. You can learn more at Privacy Policy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
en_US