Four reasons to be optimistic about AI’s energy usage
The day after his inauguration in January, President Donald Trump announced Stargate, a $500 billion initiative to build out AI infrastructure, backed by some of the biggest companies in tech. Stargate aims to accelerate the construction of massive data centers and electricity networks across the US to ensure it keeps its edge over China. This story is a part of MIT Technology Review’s series “Power Hungry: AI and our energy future,” on the energy demands and carbon costs of the artificial-intelligence revolution. The whatever-it-takes approach to the race for worldwide AI dominance was the talk of Davos, says Raquel Urtasun, founder and CEO of the Canadian robotruck startup Waabi, referring to the World Economic Forum’s annual January meeting in Switzerland, which was held the same week as Trump’s announcement. “I’m pretty worried about where the industry is going,” Urtasun says. She’s not alone. “Dollars are being invested, GPUs are being burned, water is being evaporated—it’s just absolutely the wrong direction,” says Ali Farhadi, CEO of the Seattle-based nonprofit Allen Institute for AI. But sift through the talk of rocketing costs—and climate impact—and you’ll find reasons to be hopeful. There are innovations underway that could improve the efficiency of the software behind AI models, the computer chips those models run on, and the data centers where those chips hum around the clock. Here’s what you need to know about how energy use, and therefore carbon emissions, could be cut across all three of those domains, plus an added argument for cautious optimism: There are reasons to believe that the underlying business realities will ultimately bend toward more energy-efficient AI. 1/ More efficient models The most obvious place to start is with the models themselves—the way they’re created and the way they’re run. AI models are built by training neural networks on lots and lots of data. Large language models are trained on vast amounts of text, self-driving models are trained on vast amounts of driving data, and so on. But the way such data is collected is often indiscriminate. Large language models are trained on data sets that include text scraped from most of the internet and huge libraries of scanned books. The practice has been to grab everything that’s not nailed down, throw it into the mix, and see what comes out. This approach has certainly worked, but training a model on a massive data set over and over so it can extract relevant patterns by itself is a waste of time and energy. There might be a more efficient way. Children aren’t expected to learn just by reading everything that’s ever been written; they are given a focused curriculum. Urtasun thinks we should do something similar with AI, training models with more curated data tailored to specific tasks. (Waabi trains its robotrucks inside a superrealistic simulation that allows fine-grained control of the virtual data its models are presented with.) It’s not just Waabi. Writer, an AI startup that builds large language models for enterprise customers, claims that its models are cheaper to train and run in part because it trains them using synthetic data. Feeding its models bespoke data sets rather than larger but less curated ones makes the training process quicker (and therefore less expensive). For example, instead of simply downloading Wikipedia, the team at Writer takes individual Wikipedia pages and rewrites their contents in different formats—as a Q&A instead of a block of text, and so on—so that its models can learn more from less. Training is just the start of a model’s life cycle. As models have become bigger, they have become more expensive to run. So-called reasoning models that work through a query step by step before producing a response are especially power-hungry because they compute a series of intermediate subresponses for each response. The price tag of these new capabilities is eye-watering: OpenAI’s o3 reasoning model has been estimated to cost up to $30,000 per task to run. But this technology is only a few months old and still experimental. Farhadi expects that these costs will soon come down. For example, engineers will figure out how to stop reasoning models from going too far down a dead-end path before they determine it’s not viable. “The first time you do something it’s way more expensive, and then you figure out how to make it smaller and more efficient,” says Farhadi. “It’s a fairly consistent trend in technology.” One way to get performance gains without big jumps in energy consumption is to run inference steps (the computations a model makes to come up with its response) in parallel, he says. Parallel computing underpins much of today’s software, especially large language models (GPUs are parallel by design). Even so, the basic technique could be applied to a wider range of problems. By splitting up a task and running different parts of it at the same time, parallel computing can generate results more quickly. It can also save energy by making more efficient use of available hardware. But it requires clever new algorithms to coordinate the multiple subtasks and pull them together into a single result at the end. The largest, most powerful models won’t be used all the time, either. There is a lot of talk about small models, versions of large language models that have been distilled into pocket-size packages. In many cases, these more efficient models perform as well as larger ones, especially for specific use cases. As businesses figure out how large language models fit their needs (or not), this trend toward more efficient bespoke models is taking off. You don’t need an all-purpose LLM to manage inventory or to respond to niche customer queries. “There’s going to be a really, really large number of specialized models, not one God-given model that solves everything,” says Farhadi. Christina Shim, chief sustainability officer at IBM, is seeing this trend play out in the way her clients adopt the technology. She works with businesses to make sure they choose the smallest and least power-hungry models possible.
Four reasons to be optimistic about AI’s energy usage Read Post »