YouZum

Committee

AI, Committee, News, Uncategorized

Evaluation and Facilitation of Online Discussions in the LLM Era: A Survey

arXiv:2503.01513v3 Announce Type: replace Abstract: We present a survey of methods for assessing and enhancing the quality of online discussions, focusing on the potential of LLMs. While online discourses aim, at least in theory, to foster mutual understanding, they often devolve into harmful exchanges, such as hate speech, threatening social cohesion and democratic values. Recent advancements in LLMs enable artificial facilitation agents to not only moderate content, but also actively improve the quality of interactions. Our survey synthesizes ideas from NLP and Social Sciences to provide (a) a new taxonomy on discussion quality evaluation, (b) an overview of intervention and facilitation strategies, (c) along with a new taxonomy of conversation facilitation datasets, (d) an LLM-oriented roadmap of good practices and future research directions, from technological and societal perspectives.

Evaluation and Facilitation of Online Discussions in the LLM Era: A Survey Read Post »

AI, Committee, News, Uncategorized

Fair-GPTQ: Bias-Aware Quantization for Large Language Models

arXiv:2509.15206v1 Announce Type: new Abstract: High memory demands of generative language models have drawn attention to quantization, which reduces computational cost, memory usage, and latency by mapping model weights to lower-precision integers. Approaches such as GPTQ effectively minimize input-weight product errors during quantization; however, recent empirical studies show that they can increase biased outputs and degrade performance on fairness benchmarks, and it remains unclear which specific weights cause this issue. In this work, we draw new links between quantization and model fairness by adding explicit group-fairness constraints to the quantization objective and introduce Fair-GPTQ, the first quantization method explicitly designed to reduce unfairness in large language models. The added constraints guide the learning of the rounding operation toward less-biased text generation for protected groups. Specifically, we focus on stereotype generation involving occupational bias and discriminatory language spanning gender, race, and religion. Fair-GPTQ has minimal impact on performance, preserving at least 90% of baseline accuracy on zero-shot benchmarks, reduces unfairness relative to a half-precision model, and retains the memory and speed benefits of 4-bit quantization. We also compare the performance of Fair-GPTQ with existing debiasing methods and find that it achieves performance on par with the iterative null-space projection debiasing approach on racial-stereotype benchmarks. Overall, the results validate our theoretical solution to the quantization problem with a group-bias term, highlight its applicability for reducing group bias at quantization time in generative models, and demonstrate that our approach can further be used to analyze channel- and weight-level contributions to fairness during quantization.

Fair-GPTQ: Bias-Aware Quantization for Large Language Models Read Post »

AI, Committee, News, Uncategorized

Introducing OmniGEC: A Silver Multilingual Dataset for Grammatical Error Correction

arXiv:2509.14504v1 Announce Type: new Abstract: In this paper, we introduce OmniGEC, a collection of multilingual silver-standard datasets for the task of Grammatical Error Correction (GEC), covering eleven languages: Czech, English, Estonian, German, Greek, Icelandic, Italian, Latvian, Slovene, Swedish, and Ukrainian. These datasets facilitate the development of multilingual GEC solutions and help bridge the data gap in adapting English GEC solutions to multilingual GEC. The texts in the datasets originate from three sources: Wikipedia edits for the eleven target languages, subreddits from Reddit in the eleven target languages, and the Ukrainian-only UberText 2.0 social media corpus. While Wikipedia edits were derived from human-made corrections, the Reddit and UberText 2.0 data were automatically corrected with the GPT-4o-mini model. The quality of the corrections in the datasets was evaluated both automatically and manually. Finally, we fine-tune two open-source large language models – Aya-Expanse (8B) and Gemma-3 (12B) – on the multilingual OmniGEC corpora and achieve state-of-the-art (SOTA) results for paragraph-level multilingual GEC. The dataset collection and the best-performing models are available on Hugging Face.

Introducing OmniGEC: A Silver Multilingual Dataset for Grammatical Error Correction Read Post »

AI, Committee, News, Uncategorized

AgentCompass: Towards Reliable Evaluation of Agentic Workflows in Production

arXiv:2509.14647v1 Announce Type: cross Abstract: With the growing adoption of Large Language Models (LLMs) in automating complex, multi-agent workflows, organizations face mounting risks from errors, emergent behaviors, and systemic failures that current evaluation methods fail to capture. We present AgentCompass, the first evaluation framework designed specifically for post-deployment monitoring and debugging of agentic workflows. AgentCompass models the reasoning process of expert debuggers through a structured, multi-stage analytical pipeline: error identification and categorization, thematic clustering, quantitative scoring, and strategic summarization. The framework is further enhanced with a dual memory system-episodic and semantic-that enables continual learning across executions. Through collaborations with design partners, we demonstrate the framework’s practical utility on real-world deployments, before establishing its efficacy against the publicly available TRAIL benchmark. AgentCompass achieves state-of-the-art results on key metrics, while uncovering critical issues missed in human annotations, underscoring its role as a robust, developer-centric tool for reliable monitoring and improvement of agentic systems in production.

AgentCompass: Towards Reliable Evaluation of Agentic Workflows in Production Read Post »

AI, Committee, News, Uncategorized

Diverse, not Short: A Length-Controlled Data Selection Strategy for Improving Response Diversity of Language Models

arXiv:2505.16245v3 Announce Type: replace Abstract: Diverse language model responses are crucial for creative generation, open-ended tasks, and self-improvement training. We show that common diversity metrics, and even reward models used for preference optimization, systematically bias models toward shorter outputs, limiting expressiveness. To address this, we introduce Diverse, not Short (Diverse-NS), a length-controlled data selection strategy that improves response diversity while maintaining length parity. By generating and filtering preference data that balances diversity, quality, and length, Diverse-NS enables effective training using only 3,000 preference pairs. Applied to LLaMA-3.1-8B and the Olmo-2 family, Diverse-NS substantially enhances lexical and semantic diversity. We show consistent improvement in diversity with minor reduction or gains in response quality on four creative generation tasks: Divergent Associations, Persona Generation, Alternate Uses, and Creative Writing. Surprisingly, experiments with the Olmo-2 model family (7B, and 13B) show that smaller models like Olmo-2-7B can serve as effective “diversity teachers” for larger models. By explicitly addressing length bias, our method efficiently pushes models toward more diverse and expressive outputs.

Diverse, not Short: A Length-Controlled Data Selection Strategy for Improving Response Diversity of Language Models Read Post »

AI, Committee, News, Uncategorized

Video-Language Critic: Transferable Reward Functions for Language-Conditioned Robotics

arXiv:2405.19988v3 Announce Type: replace-cross Abstract: Natural language is often the easiest and most convenient modality for humans to specify tasks for robots. However, learning to ground language to behavior typically requires impractical amounts of diverse, language-annotated demonstrations collected on each target robot. In this work, we aim to separate the problem of what to accomplish from how to accomplish it, as the former can benefit from substantial amounts of external observation-only data, and only the latter depends on a specific robot embodiment. To this end, we propose Video-Language Critic, a reward model that can be trained on readily available cross-embodiment data using contrastive learning and a temporal ranking objective, and use it to score behavior traces from a separate actor. When trained on Open X-Embodiment data, our reward model enables 2x more sample-efficient policy training on Meta-World tasks than a sparse reward only, despite a significant domain gap. Using in-domain data but in a challenging task generalization setting on Meta-World, we further demonstrate more sample-efficient training than is possible with prior language-conditioned reward models that are either trained with binary classification, use static images, or do not leverage the temporal information present in video data.

Video-Language Critic: Transferable Reward Functions for Language-Conditioned Robotics Read Post »

AI, Committee, News, Uncategorized

Puzzled by Puzzles: When Vision-Language Models Can’t Take a Hint

arXiv:2505.23759v2 Announce Type: replace Abstract: Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues (“head” over “heels”). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.

Puzzled by Puzzles: When Vision-Language Models Can’t Take a Hint Read Post »

AI, Committee, News, Uncategorized

Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions

arXiv:2501.01872v5 Announce Type: replace Abstract: Large language models, despite extensive alignment with human values and ethical principles, remain vulnerable to sophisticated jailbreak attacks that exploit their reasoning abilities. Existing safety measures often detect overt malicious intent but fail to address subtle, reasoning-driven vulnerabilities. In this work, we introduce POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses. POATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety. We conduct extensive evaluation across six diverse language model families of varying parameter sizes to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses. These methods enhance reasoning robustness and strengthen the model’s defense against adversarial exploits.

Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions Read Post »

AI, Committee, News, Uncategorized

Combining Evidence and Reasoning for Biomedical Fact-Checking

arXiv:2509.13879v1 Announce Type: new Abstract: Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https: //github.com/PRAISELab-PicusLab/CER.

Combining Evidence and Reasoning for Biomedical Fact-Checking Read Post »

AI, Committee, News, Uncategorized

Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification

arXiv:2509.13888v1 Announce Type: new Abstract: Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https://github.com/PRAISELab-PicusLab/CER

Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification Read Post »

We use cookies to improve your experience and performance on our website. You can learn more at Privacy Policy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
en_US