YouZum

Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?

arXiv:2512.17394v2 Announce Type: replace
Abstract: Theory of Mind (ToM) – the ability to attribute beliefs and intents to others – is fundamental for social intelligence, yet Vision-Language Model (VLM) evaluations remain largely Western-centric. In this work, we introduce CulturalToM-VQA, a benchmark of 5,095 visually situated ToM probes across diverse cultural contexts, rituals, and social norms. Constructed through a frontier proprietary MLLM, human-verified pipeline, the dataset spans a taxonomy of six ToM tasks and four complexity levels. We benchmark 10 VLMs (2023-2025) and observe a significant performance leap: while earlier models struggle, frontier models achieve high accuracy (>93%). However, significant limitations persist: models struggle with false belief reasoning (19-83% accuracy) and show high regional variance (20-30% gaps). Crucially, we find that SOTA models exhibit social desirability bias – systematically favoring semantically positive answer choices over negative ones. Ablation experiments reveal that some frontier models rely heavily on parametric social priors, frequently defaulting to safety-aligned predictions. Furthermore, while Chain-of-Thought prompting aids older models, it yields minimal gains for newer ones. Overall, our work provides a testbed for cross-cultural social reasoning, underscoring that despite architectural gains, achieving robust, visually grounded understanding remains an open challenge.

We use cookies to improve your experience and performance on our website. You can learn more at Privacy Policy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
en_US