YouZum

TaxoBell: Gaussian Box Embeddings for Self-Supervised Taxonomy Expansion

arXiv:2601.09633v1 Announce Type: new
Abstract: Taxonomies form the backbone of structured knowledge representation across diverse domains, enabling applications such as e-commerce catalogs, semantic search, and biomedical discovery. Yet, manual taxonomy expansion is labor-intensive and cannot keep pace with the emergence of new concepts. Existing automated methods rely on point-based vector embeddings, which model symmetric similarity and thus struggle with the asymmetric “is-a” relationships that are fundamental to taxonomies. Box embeddings offer a promising alternative by enabling containment and disjointness, but they face key issues: (i) unstable gradients at the intersection boundaries, (ii) no notion of semantic uncertainty, and (iii) limited capacity to represent polysemy or ambiguity. We address these shortcomings with TaxoBell, a Gaussian box embedding framework that translates between box geometries and multivariate Gaussian distributions, where means encode semantic location and covariances encode uncertainty. Energy-based optimization yields stable optimization, robust modeling of ambiguous concepts, and interpretable hierarchical reasoning. Extensive experimentation on five benchmark datasets demonstrates that TaxoBell significantly outperforms eight state-of-the-art taxonomy expansion baselines by 19% in MRR and around 25% in Recall@k. We further demonstrate the advantages and pitfalls of TaxoBell with error analysis and ablation studies.

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN