YouZum

STEPER: Step-wise Knowledge Distillation for Enhancing Reasoning Ability in Multi-Step Retrieval-Augmented Language Models

arXiv:2510.07923v1 Announce Type: new
Abstract: Answering complex real-world questions requires step-by-step retrieval and integration of relevant information to generate well-grounded responses. However, existing knowledge distillation methods overlook the need for different reasoning abilities at different steps, hindering transfer in multi-step retrieval-augmented frameworks. To address this, we propose Stepwise Knowledge Distillation for Enhancing Reasoning Ability in Multi-Step Retrieval-Augmented Language Models (StepER). StepER employs step-wise supervision to align with evolving information and reasoning demands across stages. Additionally, it incorporates difficulty-aware training to progressively optimize learning by prioritizing suitable steps. Our method is adaptable to various multi-step retrieval-augmented language models, including those that use retrieval queries for reasoning paths or decomposed questions. Extensive experiments show that StepER outperforms prior methods on multi-hop QA benchmarks, with an 8B model achieving performance comparable to a 70B teacher model.

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN