YouZum

Readability Reconsidered: A Cross-Dataset Analysis of Reference-Free Metrics

arXiv:2510.15345v1 Announce Type: new
Abstract: Automatic readability assessment plays a key role in ensuring effective and accessible written communication. Despite significant progress, the field is hindered by inconsistent definitions of readability and measurements that rely on surface-level text properties. In this work, we investigate the factors shaping human perceptions of readability through the analysis of 897 judgments, finding that, beyond surface-level cues, information content and topic strongly shape text comprehensibility. Furthermore, we evaluate 15 popular readability metrics across five English datasets, contrasting them with six more nuanced, model-based metrics. Our results show that four model-based metrics consistently place among the top four in rank correlations with human judgments, while the best performing traditional metric achieves an average rank of 8.6. These findings highlight a mismatch between current readability metrics and human perceptions, pointing to model-based approaches as a more promising direction.

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN