YouZum

From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning

arXiv:2507.13142v3 Announce Type: replace-cross
Abstract: Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree’s static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree’s probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN