YouZum

ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding

arXiv:2509.17481v1 Announce Type: cross
Abstract: Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN