YouZum

GCC-Spam: Spam Detection via GAN, Contrastive Learning, and Character Similarity Networks

arXiv:2507.14679v1 Announce Type: cross
Abstract: The exponential growth of spam text on the Internet necessitates robust detection mechanisms to mitigate risks such as information leakage and social instability. This work addresses two principal challenges: adversarial strategies employed by spammers and the scarcity of labeled data. We propose a novel spam-text detection framework GCC-Spam, which integrates three core innovations. First, a character similarity network captures orthographic and phonetic features to counter character-obfuscation attacks and furthermore produces sentence embeddings for downstream classification. Second, contrastive learning enhances discriminability by optimizing the latent-space distance between spam and normal texts. Third, a Generative Adversarial Network (GAN) generates realistic pseudo-spam samples to alleviate data scarcity while improving model robustness and classification accuracy. Extensive experiments on real-world datasets demonstrate that our model outperforms baseline approaches, achieving higher detection rates with significantly fewer labeled examples.

We use cookies to improve your experience and performance on our website. You can learn more at 隱私權政策 and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
zh_CN