YouZum

ToxiTwitch: Toward Emote-Aware Hybrid Moderation for Live Streaming Platforms

arXiv:2601.15605v1 Announce Type: new
Abstract: The rapid growth of live-streaming platforms such as Twitch has introduced complex challenges in moderating toxic behavior. Traditional moderation approaches, such as human annotation and keyword-based filtering, have demonstrated utility, but human moderators on Twitch constantly struggle to scale effectively in the fast-paced, high-volume, and context-rich chat environment of the platform while also facing harassment themselves. Recent advances in large language models (LLMs), such as DeepSeek-R1-Distill and Llama-3-8B-Instruct, offer new opportunities for toxicity detection, especially in understanding nuanced, multimodal communication involving emotes. In this work, we present an exploratory comparison of toxicity detection approaches tailored to Twitch. Our analysis reveals that incorporating emotes improves the detection of toxic behavior. To this end, we introduce ToxiTwitch, a hybrid model that combines LLM-generated embeddings of text and emotes with traditional machine learning classifiers, including Random Forest and SVM. In our case study, the proposed hybrid approach reaches up to 80 percent accuracy under channel-specific training (with 13 percent improvement over BERT and F1-score of 76 percent). This work is an exploratory study intended to surface challenges and limits of emote-aware toxicity detection on Twitch.

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th