YouZum

Text Rationalization for Robust Causal Effect Estimation

arXiv:2512.05373v1 Announce Type: cross
Abstract: Recent advances in natural language processing have enabled the increasing use of text data in causal inference, particularly for adjusting confounding factors in treatment effect estimation. Although high-dimensional text can encode rich contextual information, it also poses unique challenges for causal identification and estimation. In particular, the positivity assumption, which requires sufficient treatment overlap across confounder values, is often violated at the observational level, when massive text is represented in feature spaces. Redundant or spurious textual features inflate dimensionality, producing extreme propensity scores, unstable weights, and inflated variance in effect estimates. We address these challenges with Confounding-Aware Token Rationalization (CATR), a framework that selects a sparse necessary subset of tokens using a residual-independence diagnostic designed to preserve confounding information sufficient for unconfoundedness. By discarding irrelevant texts while retaining key signals, CATR mitigates observational-level positivity violations and stabilizes downstream causal effect estimators. Experiments on synthetic data and a real-world study using the MIMIC-III database demonstrate that CATR yields more accurate, stable, and interpretable causal effect estimates than existing baselines.

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th