YouZum

Research on Multi-hop Inference Optimization of LLM Based on MQUAKE Framework

arXiv:2509.04770v1 Announce Type: new
Abstract: Accurately answering complex questions has consistently been a significant challenge for Large Language Models (LLMs). To address this, this paper proposes a multi-hop question decomposition method for complex questions, building upon research within the MQUAKE framework. Utilizing the LLAMA3 model, we systematically investigate the impact of multi-hop question decomposition within knowledge graphs on model comprehension and reasoning accuracy, both before and after model training. In our experiments, we systematically partitioned and converted the MQUAKE-T dataset into two distinct formats: a single-hop dataset designed for directly answering complex questions, and a multi-hop dataset constructed using the multi-hop question decomposition method. We then fine-tuned the LLAMA3 model on these datasets and conducted inference tests. Our results demonstrate that, without fine-tuning the LLM, the prediction performance based on the multi-hop question decomposition method significantly outperforms the method of directly answering complex questions. After fine-tuning using the LoRA (Low-Rank Adaptation) method, the performance of both approaches improved compared to the untrained baseline. Crucially, the method utilizing multi-hop decomposition consistently maintained its superiority. These findings validate the effectiveness of the multi-hop decomposition method both before and after training, demonstrating its capability to effectively enhance the LLM’s ability to answer complex questions.

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th