YouZum

Distilling Multilingual Vision-Language Models: When Smaller Models Stay Multilingual

arXiv:2510.26271v1 Announce Type: new
Abstract: Vision-language models (VLMs) exhibit uneven performance across languages, a problem that is often exacerbated when the model size is reduced. While Knowledge distillation (KD) demonstrates promising results in transferring knowledge from larger to smaller VLMs, applying KD in multilingualism is an underexplored area. This paper presents a controlled empirical study of KD behavior across five distillation approaches, isolating their effects on cross-lingual representation consistency and downstream performance stability under model compression. We study five distillation formulations across CLIP and SigLIP2, and evaluate them on in-domain retrieval and out-of-domain visual QA. We find that some configurations preserve or even improve multilingual retrieval robustness despite halving model size, but others fail to maintain cross-task stability, exposing design-sensitive trade-offs that aggregate accuracy alone does not reveal.

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th