YouZum

Committee

AI, Committee, ข่าว, Uncategorized

Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing

arXiv:2510.12121v1 Announce Type: cross Abstract: Precise attribute intensity control–generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities–is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method’s ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control

Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing Read Post »

AI, Committee, ข่าว, Uncategorized

Credal Transformer: A Principled Approach for Quantifying and Mitigating Hallucinations in Large Language Models

arXiv:2510.12137v1 Announce Type: new Abstract: Large Language Models (LLMs) hallucinate, generating factually incorrect yet confident assertions. We argue this stems from the Transformer’s Softmax function, which creates “Artificial Certainty” by collapsing ambiguous attention scores into a single probability distribution, discarding uncertainty information at each layer. To fix this, we introduce the Credal Transformer, which replaces standard attention with a Credal Attention Mechanism (CAM) based on evidential theory. CAM produces a “credal set” (a set of distributions) instead of a single attention vector, with the set’s size directly measuring model uncertainty. We implement this by re-conceptualizing attention scores as evidence masses for a Dirichlet distribution: sufficient evidence recovers standard attention, while insufficient evidence yields a diffuse distribution, representing ambiguity. Empirically, the Credal Transformer identifies out-of-distribution inputs, quantifies ambiguity, and significantly reduces confident errors on unanswerable questions by abstaining. Our contribution is a new architecture to mitigate hallucinations and a design paradigm that integrates uncertainty quantification directly into the model, providing a foundation for more reliable AI.

Credal Transformer: A Principled Approach for Quantifying and Mitigating Hallucinations in Large Language Models Read Post »

AI, Committee, ข่าว, Uncategorized

Agent Learning via Early Experience

arXiv:2510.08558v2 Announce Type: replace-cross Abstract: A long-term goal of language agents is to learn and improve through their own experience, ultimately outperforming humans in complex, real-world tasks. However, training agents from experience data with reinforcement learning remains difficult in many environments, which either lack verifiable rewards (e.g., websites) or require inefficient long-horizon rollouts (e.g., multi-turn tool use). As a result, most current agents rely on supervised fine-tuning on expert data, which is challenging to scale and generalizes poorly. This limitation stems from the nature of expert demonstrations: they capture only a narrow range of scenarios and expose the agent to limited environment diversity. We address this limitation with a middle-ground paradigm we call early experience: interaction data generated by the agent’s own actions, where the resulting future states serve as supervision without reward signals. Within this paradigm we study two strategies of using such data: (1) Implicit world modeling, which uses collected states to ground the policy in environment dynamics; and (2) Self-reflection, where the agent learns from its suboptimal actions to improve reasoning and decision-making. We evaluate across eight diverse environments and multiple model families. Our approaches consistently improve effectiveness and out-of-domain generalization, highlighting the value of early experience. Moreover, in environments with verifiable rewards, our results provide promising signals that early experience offers a strong foundation for subsequent reinforcement learning, positioning it as a practical bridge between imitation learning and fully experience-driven agents.

Agent Learning via Early Experience Read Post »

AI, Committee, ข่าว, Uncategorized

SafeMT: Multi-turn Safety for Multimodal Language Models

arXiv:2510.12133v1 Announce Type: new Abstract: With the widespread use of multi-modal Large Language models (MLLMs), safety issues have become a growing concern. Multi-turn dialogues, which are more common in everyday interactions, pose a greater risk than single prompts; however, existing benchmarks do not adequately consider this situation. To encourage the community to focus on the safety issues of these models in multi-turn dialogues, we introduce SafeMT, a benchmark that features dialogues of varying lengths generated from harmful queries accompanied by images. This benchmark consists of 10,000 samples in total, encompassing 17 different scenarios and four jailbreak methods. Additionally, we propose Safety Index (SI) to evaluate the general safety of MLLMs during conversations. We assess the safety of 17 models using this benchmark and discover that the risk of successful attacks on these models increases as the number of turns in harmful dialogues rises. This observation indicates that the safety mechanisms of these models are inadequate for recognizing the hazard in dialogue interactions. We propose a dialogue safety moderator capable of detecting malicious intent concealed within conversations and providing MLLMs with relevant safety policies. Experimental results from several open-source models indicate that this moderator is more effective in reducing multi-turn ASR compared to existed guard models.

SafeMT: Multi-turn Safety for Multimodal Language Models Read Post »

AI, Committee, ข่าว, Uncategorized

EmoDebt: Bayesian-Optimized Emotional Intelligence for Strategic Agent-to-Agent Debt Recovery

arXiv:2503.21080v5 Announce Type: replace Abstract: The emergence of autonomous Large Language Model (LLM) agents has created a new ecosystem of strategic, agent-to-agent interactions. However, a critical challenge remains unaddressed: in high-stakes, emotion-sensitive domains like debt collection, LLM agents pre-trained on human dialogue are vulnerable to exploitation by adversarial counterparts who simulate negative emotions to derail negotiations. To fill this gap, we first contribute a novel dataset of simulated debt recovery scenarios and a multi-agent simulation framework. Within this framework, we introduce EmoDebt, an LLM agent architected for robust performance. Its core innovation is a Bayesian-optimized emotional intelligence engine that reframes a model’s ability to express emotion in negotiation as a sequential decision-making problem. Through online learning, this engine continuously tunes EmoDebt’s emotional transition policies, discovering optimal counter-strategies against specific debtor tactics. Extensive experiments on our proposed benchmark demonstrate that EmoDebt achieves significant strategic robustness, substantially outperforming non-adaptive and emotion-agnostic baselines across key performance metrics, including success rate and operational efficiency. By introducing both a critical benchmark and a robustly adaptive agent, this work establishes a new foundation for deploying strategically robust LLM agents in adversarial, emotion-sensitive debt interactions.

EmoDebt: Bayesian-Optimized Emotional Intelligence for Strategic Agent-to-Agent Debt Recovery Read Post »

AI, Committee, ข่าว, Uncategorized

The Visual Iconicity Challenge: Evaluating Vision-Language Models on Sign Language Form-Meaning Mapping

arXiv:2510.08482v2 Announce Type: replace-cross Abstract: Iconicity, the resemblance between linguistic form and meaning, is pervasive in signed languages, offering a natural testbed for visual grounding. For vision-language models (VLMs), the challenge is to recover such essential mappings from dynamic human motion rather than static context. We introduce the Visual Iconicity Challenge, a novel video-based benchmark that adapts psycholinguistic measures to evaluate VLMs on three tasks: (i) phonological sign-form prediction (e.g., handshape, location), (ii) transparency (inferring meaning from visual form), and (iii) graded iconicity ratings. We assess 13 state-of-the-art VLMs in zero- and few-shot settings on Sign Language of the Netherlands and compare them to human baselines. On phonological form prediction, VLMs recover some handshape and location detail but remain below human performance; on transparency, they are far from human baselines; and only top models correlate moderately with human iconicity ratings. Interestingly, models with stronger phonological form prediction correlate better with human iconicity judgment, indicating shared sensitivity to visually grounded structure. Our findings validate these diagnostic tasks and motivate human-centric signals and embodied learning methods for modelling iconicity and improving visual grounding in multimodal models.

The Visual Iconicity Challenge: Evaluating Vision-Language Models on Sign Language Form-Meaning Mapping Read Post »

AI, Committee, ข่าว, Uncategorized

Detecting Hallucinations in Authentic LLM-Human Interactions

arXiv:2510.10539v1 Announce Type: new Abstract: As large language models (LLMs) are increasingly applied in sensitive domains such as medicine and law, hallucination detection has become a critical task. Although numerous benchmarks have been proposed to advance research in this area, most of them are artificially constructed–either through deliberate hallucination induction or simulated interactions–rather than derived from genuine LLM-human dialogues. Consequently, these benchmarks fail to fully capture the characteristics of hallucinations that occur in real-world usage. To address this limitation, we introduce AuthenHallu, the first hallucination detection benchmark built entirely from authentic LLM-human interactions. For AuthenHallu, we select and annotate samples from genuine LLM-human dialogues, thereby providing a faithful reflection of how LLMs hallucinate in everyday user interactions. Statistical analysis shows that hallucinations occur in 31.4% of the query-response pairs in our benchmark, and this proportion increases dramatically to 60.0% in challenging domains such as Math & Number Problems. Furthermore, we explore the potential of using vanilla LLMs themselves as hallucination detectors and find that, despite some promise, their current performance remains insufficient in real-world scenarios.

Detecting Hallucinations in Authentic LLM-Human Interactions Read Post »

AI, Committee, ข่าว, Uncategorized

Let’s Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM’s Math Capability

arXiv:2505.23703v4 Announce Type: replace-cross Abstract: Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning (NFL-HR)**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the NL-FL Problem Alignment method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the Mixed Problem Input technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based Answer Extraction mechanism. Comprehensive experiments demonstrate that the NFL-HR framework achieves **89.80**% and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by **4.60%** and **4.82%**, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.

Let’s Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM’s Math Capability Read Post »

AI, Committee, ข่าว, Uncategorized

BitMar: Low-Bit Multimodal Fusion with Episodic Memory for Edge Devices

arXiv:2510.10560v1 Announce Type: new Abstract: Cross-attention transformers and other multimodal vision-language models excel at grounding and generation; however, their extensive, full-precision backbones make it challenging to deploy them on edge devices. Memory-augmented architectures enhance the utilization of past context; however, most works rarely pair them with aggressive edge-oriented quantization. We introduce BitMar, a quantized multimodal transformer that proposes an external human-like episodic memory for effective image-text generation on hardware with limited resources. BitMar utilizes 1.58-bit encoders, one for text (BitNet-style) and one for vision (DiNOv2-based), to create compact embeddings that are combined and used to query a fixed-size key-value episodic memory. During vector retrieval, the BitNet decoder applies per-layer conditioning, which increases the contextual relevance of generated content. The decoder also employs attention sinks with a sliding-window mechanism to process long or streaming inputs under tight memory budgets. The combination of per-layer conditioning and sliding-window attention achieves a strong quality-speed trade-off, delivering competitive captioning and multimodal understanding at low latency with a small model footprint. These characteristics make BitMar well-suited for edge deployment.

BitMar: Low-Bit Multimodal Fusion with Episodic Memory for Edge Devices Read Post »

AI, Committee, ข่าว, Uncategorized

Distribution-Aligned Decoding for Efficient LLM Task Adaptation

arXiv:2509.15888v3 Announce Type: replace Abstract: Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model’s output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models.

Distribution-Aligned Decoding for Efficient LLM Task Adaptation Read Post »

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th