YouZum

AI

AI, Committee, ข่าว, Uncategorized

MiniMax AI Releases MiniMax-M1: A 456B Parameter Hybrid Model for Long-Context and Reinforcement Learning RL Tasks

The Challenge of Long-Context Reasoning in AI Models Large reasoning models are not only designed to understand language but are also structured to think through multi-step processes that require prolonged attention spans and contextual comprehension. As the expectations from AI grow, especially in real-world and software development environments, researchers have sought architectures that can handle longer inputs and sustain deep, coherent reasoning chains without overwhelming computational costs. Computational Constraints with Traditional Transformers The primary difficulty in expanding these reasoning capabilities lies in the excessive computational load that comes with longer generation lengths. Traditional transformer-based models employ a softmax attention mechanism, which scales quadratically with the input size. This limits their capacity to handle long input sequences or extended chains of thought efficiently. This problem becomes even more pressing in areas that require real-time interaction or cost-sensitive applications, where inference expenses are significant. Existing Alternatives and Their Limitations Efforts to address this issue have yielded a range of methods, including sparse attention and linear attention variants. Some teams have experimented with state-space models and recurrent networks as alternatives to traditional attention structures. However, these innovations have seen limited adoption in the most competitive reasoning models due to either architectural complexity or a lack of scalability in real-world deployments. Even large-scale systems, such as Tencent’s Hunyuan-T1, which utilizes a novel Mamba architecture, remain closed-source, thereby restricting wider research engagement and validation. Introduction of MiniMax-M1: A Scalable Open-Weight Model Researchers at MiniMax AI introduced MiniMax-M1, a new open-weight, large-scale reasoning model that combines a mixture of experts’ architecture with lightning-fast attention. Built as an evolution of the MiniMax-Text-01 model, MiniMax-M1 contains 456 billion parameters, with 45.9 billion activated per token. It supports context lengths of up to 1 million tokens—eight times the capacity of DeepSeek R1. This model addresses compute scalability at inference time, consuming only 25% of the FLOPs required by DeepSeek R1 at 100,000 token generation length. It was trained using large-scale reinforcement learning on a broad range of tasks, from mathematics and coding to software engineering, marking a shift toward practical, long-context AI models. Hybrid-Attention with Lightning Attention and Softmax Blocks To optimize this architecture, MiniMax-M1 employs a hybrid attention scheme where every seventh transformer block uses traditional softmax attention, followed by six blocks using lightning attention. This significantly reduces computational complexity while preserving performance. The lightning attention itself is I/O-aware, adapted from linear attention, and is particularly effective at scaling reasoning lengths to hundreds of thousands of tokens. For reinforcement learning efficiency, the researchers introduced a novel algorithm called CISPO. Instead of clipping token updates as traditional methods do, CISPO clips importance sampling weights, enabling stable training and consistent token contributions, even in off-policy updates. The CISPO Algorithm and RL Training Efficiency The CISPO algorithm proved essential in overcoming the training instability faced in hybrid architectures. In comparative studies using the Qwen2.5-32B baseline, CISPO achieved a 2x speedup compared to DAPO. Leveraging this, the full reinforcement learning cycle for MiniMax-M1 was completed in just three weeks using 512 H800 GPUs, with a rental cost of approximately $534,700. The model was trained on a diverse dataset comprising 41 logic tasks generated via the SynLogic framework and real-world software engineering environments derived from the SWE bench. These environments utilized execution-based rewards to guide performance, resulting in stronger outcomes in practical coding tasks. Benchmark Results and Comparative Performance MiniMax-M1 delivered compelling benchmark results. Compared to DeepSeek-R1 and Qwen3-235B, it excelled in software engineering, long-context processing, and agentic tool use. Although it trailed the latest DeepSeek-R1-0528 in math and coding contests, it surpassed both OpenAI o3 and Claude 4 Opus in long-context understanding benchmarks. Furthermore, it outperformed Gemini 2.5 Pro in the TAU-Bench agent tool use evaluation. Conclusion: A Scalable and Transparent Model for Long-Context AI MiniMax-M1 presents a significant step forward by offering both transparency and scalability. By addressing the dual challenge of inference efficiency and training complexity, the research team at MiniMax AI has set a precedent for open-weight reasoning models. This work not only brings a solution to compute constraints but also introduces practical methods for scaling language model intelligence into real-world applications. Check out the Paper, Model and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. The post MiniMax AI Releases MiniMax-M1: A 456B Parameter Hybrid Model for Long-Context and Reinforcement Learning RL Tasks appeared first on MarkTechPost.

MiniMax AI Releases MiniMax-M1: A 456B Parameter Hybrid Model for Long-Context and Reinforcement Learning RL Tasks Read Post »

AI, Committee, ข่าว, Uncategorized

A Gentle Introduction to Multi-Head Attention and Grouped-Query Attention

This post is divided into three parts; they are: • Why Attention is Needed • The Attention Operation • Multi-Head Attention (MHA) • Grouped-Query Attention (GQA) and Multi-Query Attention (MQA) Traditional neural networks struggle with long-range dependencies in sequences.

A Gentle Introduction to Multi-Head Attention and Grouped-Query Attention Read Post »

AI, Committee, ข่าว, Uncategorized

Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models

arXiv:2506.14625v2 Announce Type: replace Abstract: Large Language Models (LLMs) have shown impressive moral reasoning abilities. Yet they often diverge when confronted with complex, multi-factor moral dilemmas. To address these discrepancies, we propose a framework that synthesizes multiple LLMs’ moral judgments into a collectively formulated moral judgment, realigning models that deviate significantly from this consensus. Our aggregation mechanism fuses continuous moral acceptability scores (beyond binary labels) into a collective probability, weighting contributions by model reliability. For misaligned models, a targeted embedding-optimization procedure fine-tunes token embeddings for moral philosophical theories, minimizing JS divergence to the consensus while preserving semantic integrity. Experiments on a large-scale social moral dilemma dataset show our approach builds robust consensus and improves individual model fidelity. These findings highlight the value of data-driven moral alignment across multiple models and its potential for safer, more consistent AI systems.

Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models Read Post »

AI, Committee, ข่าว, Uncategorized

Dynamic Acoustic Model Architecture Optimization in Training for ASR

arXiv:2506.13180v2 Announce Type: replace Abstract: Architecture design is inherently complex. Existing approaches rely on either handcrafted rules, which demand extensive empirical expertise, or automated methods like neural architecture search, which are computationally intensive. In this paper, we introduce DMAO, an architecture optimization framework that employs a grow-and-drop strategy to automatically reallocate parameters during training. This reallocation shifts resources from less-utilized areas to those parts of the model where they are most beneficial. Notably, DMAO only introduces negligible training overhead at a given model complexity. We evaluate DMAO through experiments with CTC on LibriSpeech, TED-LIUM-v2 and Switchboard datasets. The results show that, using the same amount of training resources, our proposed DMAO consistently improves WER by up to 6% relatively across various architectures, model sizes, and datasets. Furthermore, we analyze the pattern of parameter redistribution and uncover insightful findings.

Dynamic Acoustic Model Architecture Optimization in Training for ASR Read Post »

AI, Committee, ข่าว, Uncategorized

MinosEval: Distinguishing Factoid and Non-Factoid for Tailored Open-Ended QA Evaluation with LLMs

arXiv:2506.15215v1 Announce Type: new Abstract: Open-ended question answering (QA) is a key task for evaluating the capabilities of large language models (LLMs). Compared to closed-ended QA, it demands longer answer statements, more nuanced reasoning processes, and diverse expressions, making refined and interpretable automatic evaluation both crucial and challenging. Traditional metrics like ROUGE and BERTScore struggle to capture semantic similarities due to different patterns between model responses and reference answers. Current LLM-based evaluation approaches, such as pairwise or listwise comparisons of candidate answers, lack intuitive interpretability. While pointwise scoring of each response provides some descriptions, it fails to adapt across different question contents. Most notably, existing methods overlook the distinction between factoid and non-factoid questions. To address these challenges, we propose textbf{MinosEval}, a novel evaluation method that first distinguishes open-ended questions and then ranks candidate answers using different evaluation strategies. For factoid questions, it applies an adaptive key-point scoring strategy, while for non-factoid questions, it uses an instance-aware listwise ranking strategy. Experiments on multiple open-ended QA datasets, including self-built ones with more candidate responses to complement community resources, show that MinosEval better aligns with human annotations and offers more interpretable results.

MinosEval: Distinguishing Factoid and Non-Factoid for Tailored Open-Ended QA Evaluation with LLMs Read Post »

AI, Committee, ข่าว, Uncategorized

SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling

arXiv:2506.15498v1 Announce Type: new Abstract: Process or step-wise supervision has played a crucial role in advancing complex multi-step reasoning capabilities of Large Language Models (LLMs). However, efficient, high-quality automated process annotation remains a significant challenge. To address this, we introduce Single-Pass Annotation with Reference-Guided Evaluation (SPARE), a novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation. We show that reference-guided step-level evaluation effectively facilitates process supervision on four datasets spanning three domains: mathematical reasoning, multi-hop compositional question answering, and spatial reasoning. We demonstrate that SPARE, when compared to baselines, improves reasoning performance when used for: (1) fine-tuning models in an offline RL setup for inference-time greedy-decoding, and (2) training reward models for ranking/aggregating multiple LLM-generated outputs. Additionally, SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime, compared to tree search-based automatic annotation. The codebase, along with a trained SPARE-PRM model, is publicly released to facilitate further research and reproducibility.

SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling Read Post »

AI, Committee, ข่าว, Uncategorized

ProtoReasoning: Prototypes as the Foundation for Generalizable Reasoning in LLMs

arXiv:2506.15211v1 Announce Type: new Abstract: Recent advances in Large Reasoning Models (LRMs) trained with Long Chain-of-Thought (Long CoT) reasoning have demonstrated remarkable cross-domain generalization capabilities. However, the underlying mechanisms supporting such transfer remain poorly understood. We hypothesize that cross-domain generalization arises from shared abstract reasoning prototypes — fundamental reasoning patterns that capture the essence of problems across domains. These prototypes minimize the nuances of the representation, revealing that seemingly diverse tasks are grounded in shared reasoning structures.Based on this hypothesis, we propose ProtoReasoning, a framework that enhances the reasoning ability of LLMs by leveraging scalable and verifiable prototypical representations (Prolog for logical reasoning, PDDL for planning).ProtoReasoning features: (1) an automated prototype construction pipeline that transforms problems into corresponding prototype representations; (2) a comprehensive verification system providing reliable feedback through Prolog/PDDL interpreters; (3) the scalability to synthesize problems arbitrarily within prototype space while ensuring correctness. Extensive experiments show that ProtoReasoning achieves 4.7% improvement over baseline models on logical reasoning (Enigmata-Eval), 6.3% improvement on planning tasks, 4.0% improvement on general reasoning (MMLU) and 1.0% on mathematics (AIME24). Significantly, our ablation studies confirm that learning in prototype space also demonstrates enhanced generalization to structurally similar problems compared to training solely on natural language representations, validating our hypothesis that reasoning prototypes serve as the foundation for generalizable reasoning in large language models.

ProtoReasoning: Prototypes as the Foundation for Generalizable Reasoning in LLMs Read Post »

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th