YouZum

Red-Bandit: Test-Time Adaptation for LLM Red-Teaming via Bandit-Guided LoRA Experts

arXiv:2510.07239v1 Announce Type: new
Abstract: Automated red-teaming has emerged as a scalable approach for auditing Large Language Models (LLMs) prior to deployment, yet existing approaches lack mechanisms to efficiently adapt to model-specific vulnerabilities at inference. We introduce Red-Bandit, a red-teaming framework that adapts online to identify and exploit model failure modes under distinct attack styles (e.g., manipulation, slang). Red-Bandit post-trains a set of parameter-efficient LoRA experts, each specialized for a particular attack style, using reinforcement learning that rewards the generation of unsafe prompts via a rule-based safety model. At inference, a multi-armed bandit policy dynamically selects among these attack-style experts based on the target model’s response safety, balancing exploration and exploitation. Red-Bandit achieves state-of-the-art results on AdvBench under sufficient exploration (ASR@10), while producing more human-readable prompts (lower perplexity). Moreover, Red-Bandit’s bandit policy serves as a diagnostic tool for uncovering model-specific vulnerabilities by indicating which attack styles most effectively elicit unsafe behaviors.

We use cookies to improve your experience and performance on our website. You can learn more at นโยบายความเป็นส่วนตัว and manage your privacy settings by clicking Settings.

ตั้งค่าความเป็นส่วนตัว

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • เปิดใช้งานตลอด

บันทึกการตั้งค่า
th