YouZum

Prompt Optimization as a State-Space Search Problem

arXiv:2511.18619v1 Announce Type: new
Abstract: Language Models are extremely susceptible to performance collapse with even small changes to input prompt strings. Libraries such as DSpy (from Stanford NLP) avoid this problem through demonstration-based prompt optimisation. Inspired by this, I propose an alternative approach that treats prompt optimisation as a classical state-space search problem. I model the prompt space as a graph where nodes represent prompt states and edges correspond to deliberate transformations such as shortening, adding examples, or re- ordering content. Using beam search and random walk algorithms, I systematically explore this space, evaluating candidates on development sets and pruning unpromising branches. Across five NLP tasks (sentiment classification, question answering, summarisation, reason- ing, and natural language inference), I find that even shallow search configurations (beam width=2, depth=2) improve upon seed prompts on development sets. For instance, beam search achieves development accuracy gains from 0.40 to 0.80 on reasoning tasks, though test set improvements are more modest (0.20 to 0.50), indicating overfitting to the develop- ment heuristic. Analysis of successful optimisation paths reveals that transformations that make prompts concise appear most frequently, while verbosity operators are never selected. My results validate prompt optimization as a search problem and suggest that with greater computational resources and improved evaluation metrics, deeper exploration could yield more robust prompts that generalize beyond development sets. Code and implementation are available at [https://github.com/MaanasTaneja/PromptOptimiser].

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja