YouZum

Frustratingly Easy Data Augmentation for Low-Resource ASR

arXiv:2509.15373v2 Announce Type: replace
Abstract: This paper introduces three self-contained data augmentation methods for low-resource Automatic Speech Recognition (ASR). Our techniques first generate novel text–using gloss-based replacement, random replacement, or an LLM-based approach–and then apply Text-to-Speech (TTS) to produce synthetic audio. We apply these methods, which leverage only the original annotated data, to four languages with extremely limited resources (Vatlongos, Nashta, Shinekhen Buryat, and Kakabe). Fine-tuning a pretrained Wav2Vec2-XLSR-53 model on a combination of the original audio and generated synthetic data yields significant performance gains, including a 14.3% absolute WER reduction for Nashta. The methods prove effective across all four low-resource languages and also show utility for high-resource languages like English, demonstrating their broad applicability.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja