YouZum

Evaluating Large Language Models for Anxiety, Depression, and Stress Detection: Insights into Prompting Strategies and Synthetic Data

arXiv:2511.07044v2 Announce Type: replace
Abstract: Mental health disorders affect over one-fifth of adults globally, yet detecting such conditions from text remains challenging due to the subtle and varied nature of symptom expression. This study evaluates multiple approaches for mental health detection, comparing Large Language Models (LLMs) such as Llama and GPT with classical machine learning and transformer-based architectures including BERT, XLNet, and Distil-RoBERTa. Using the DAIC-WOZ dataset of clinical interviews, we fine-tuned models for anxiety, depression, and stress classification and applied synthetic data generation to mitigate class imbalance. Results show that Distil-RoBERTa achieved the highest F1 score (0.883) for GAD-2, while XLNet outperformed others on PHQ tasks (F1 up to 0.891). For stress detection, a zero-shot synthetic approach (SD+Zero-Shot-Basic) reached an F1 of 0.884 and ROC AUC of 0.886. Findings demonstrate the effectiveness of transformer-based models and highlight the value of synthetic data in improving recall and generalization. However, careful calibration is required to prevent precision loss. Overall, this work emphasizes the potential of combining advanced language models and data augmentation to enhance automated mental health assessment from text.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja