YouZum

Do LLMs Truly Understand When a Precedent Is Overruled?

arXiv:2510.20941v1 Announce Type: new
Abstract: Large language models (LLMs) with extended context windows show promise for complex legal reasoning tasks, yet their ability to understand long legal documents remains insufficiently evaluated. Developing long-context benchmarks that capture realistic, high-stakes tasks remains a significant challenge in the field, as most existing evaluations rely on simplified synthetic tasks that fail to represent the complexity of real-world document understanding. Overruling relationships are foundational to common-law doctrine and commonly found in judicial opinions. They provide a focused and important testbed for long-document legal understanding that closely resembles what legal professionals actually do. We present an assessment of state-of-the-art LLMs on identifying overruling relationships from U.S. Supreme Court cases using a dataset of 236 case pairs. Our evaluation reveals three critical limitations: (1) era sensitivity — the models show degraded performance on historical cases compared to modern ones, revealing fundamental temporal bias in their training; (2) shallow reasoning — models rely on shallow logical heuristics rather than deep legal comprehension; and (3) context-dependent reasoning failures — models produce temporally impossible relationships in complex open-ended tasks despite maintaining basic temporal awareness in simple contexts. Our work contributes a benchmark that addresses the critical gap in realistic long-context evaluation, providing an environment that mirrors the complexity and stakes of actual legal reasoning tasks.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja