YouZum

Reinforce-Ada: An Adaptive Sampling Framework under Non-linear RL Objectives

arXiv:2510.04996v3 Announce Type: replace-cross
Abstract: Reinforcement learning (RL) for large language model reasoning is frequently hindered by signal loss, a phenomenon where standard uniform sampling with small group sizes fails to uncover informative learning signals for difficult prompts. We demonstrate that this collapse is a statistical artifact of undersampling rather than an inherent model limitation. To address this systematically, we introduce a theoretical framework based on optimizing a non-linear RL objective (e.g., log-likelihood). We show that this objective naturally induces a weighted gradient estimator that prioritizes difficult prompts, which can be robustly realized through adaptive sampling. Guided by this framework, we propose Reinforce-Ada, a family of algorithms that dynamically allocates inference budgets based on prompt difficulty, effectively scaling up RL compute to where it is needed most. Unlike passive filtering methods that discard low-signal prompts, Reinforce-Ada actively invests compute to recover them. We introduce two efficient realizations: an estimation-based approach and a model-free sequential sampling approach. Extensive experiments across multiple benchmarks show that Reinforce-Ada significantly outperforms uniform baselines like GRPO, recovering lost signals and accelerating convergence by up to $2times$ while maintaining the same total inference budget. Code is available at https://github.com/RLHFlow/Reinforce-Ada.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja