YouZum

Entropy-Guided Reasoning Compression

arXiv:2511.14258v1 Announce Type: new
Abstract: Large reasoning models have demonstrated remarkable performance on complex reasoning tasks, yet the excessive length of their chain-of-thought outputs remains a major practical bottleneck due to high computation cost and poor deployability. Existing compression methods have achieved partial success but overlook a crucial phenomenon in the training process — the entropy conflict. During compression training, entropy decreases, leading to shorter reasoning but limited exploration, while accuracy-oriented objectives increase entropy, lengthening reasoning chains. This can cause the model to get stuck in a local dilemma. Our analysis further reveals the origin of the entropy conflict: many high-entropy tokens are logical connectors that receive larger gradients and are encouraged under the performance objective, while the compression objective simultaneously penalizes these potentially redundant connectors. This opposing pressure creates a direct source of entropy conflict. To address these issues, we adopt an entropy-guided training framework. As entropy descends, the model is guided toward efficient reasoning by encouraging concise thought steps; as entropy rises, exploration is reinforced under the compact reasoning mode to improve robustness. Experiments on six mathematical benchmarks show that our method compresses reasoning length to 20% of the original while maintaining or even surpassing baseline accuracy. Code and models will be released publicly.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja