YouZum

DelvePO: Direction-Guided Self-Evolving Framework for Flexible Prompt Optimization

arXiv:2510.18257v1 Announce Type: new
Abstract: Prompt Optimization has emerged as a crucial approach due to its capabilities in steering Large Language Models to solve various tasks. However, current works mainly rely on the random rewriting ability of LLMs, and the optimization process generally focus on specific influencing factors, which makes it easy to fall into local optimum. Besides, the performance of the optimized prompt is often unstable, which limits its transferability in different tasks. To address the above challenges, we propose $textbf{DelvePO}$ ($textbf{D}$irection-Guid$textbf{e}$d Se$textbf{l}$f-E$textbf{v}$olving Framework for Fl$textbf{e}$xible $textbf{P}$rompt $textbf{O}$ptimization), a task-agnostic framework to optimize prompts in self-evolve manner. In our framework, we decouple prompts into different components that can be used to explore the impact that different factors may have on various tasks. On this basis, we introduce working memory, through which LLMs can alleviate the deficiencies caused by their own uncertainties and further obtain key insights to guide the generation of new prompts. Extensive experiments conducted on different tasks covering various domains for both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B, Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO consistently outperforms previous SOTA methods under identical experimental settings, demonstrating its effectiveness and transferability across different tasks.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja