YouZum

The Visual Iconicity Challenge: Evaluating Vision-Language Models on Sign Language Form-Meaning Mapping

arXiv:2510.08482v2 Announce Type: replace-cross
Abstract: Iconicity, the resemblance between linguistic form and meaning, is pervasive in signed languages, offering a natural testbed for visual grounding. For vision-language models (VLMs), the challenge is to recover such essential mappings from dynamic human motion rather than static context. We introduce the Visual Iconicity Challenge, a novel video-based benchmark that adapts psycholinguistic measures to evaluate VLMs on three tasks: (i) phonological sign-form prediction (e.g., handshape, location), (ii) transparency (inferring meaning from visual form), and (iii) graded iconicity ratings. We assess 13 state-of-the-art VLMs in zero- and few-shot settings on Sign Language of the Netherlands and compare them to human baselines. On phonological form prediction, VLMs recover some handshape and location detail but remain below human performance; on transparency, they are far from human baselines; and only top models correlate moderately with human iconicity ratings. Interestingly, models with stronger phonological form prediction correlate better with human iconicity judgment, indicating shared sensitivity to visually grounded structure. Our findings validate these diagnostic tasks and motivate human-centric signals and embodied learning methods for modelling iconicity and improving visual grounding in multimodal models.

We use cookies to improve your experience and performance on our website. You can learn more at プライバシーポリシー and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
ja