YouZum

UPLex: Fine-Grained Personality Control in Large Language Models via Unsupervised Lexical Modulation

arXiv:2310.16582v3 Announce Type: replace
Abstract: Personality is a crucial factor that shapes human communication patterns, thereby regulating the personalities of large language models (LLMs) holds significant potential in enhancing their user experiences. Previous approaches either relied on fine-tuning LLMs on specific corpora or required manually crafted prompts to evoke specific personalities from LLMs. However, the former is inefficient and costly, while the latter cannot precisely manipulate personality traits at a fine-grained level. To address these challenges, we propose UPLex, a method that uses an Unsupervisedly-Built Personalized Lexicon (UPL) during the decoding phase to manipulate LLM’s personality traits. UPL can be constructed from a newly built situational judgment test dataset in an unsupervised fashion, and used to modulate the personality expression of LLMs by dynamically altering their predicted probability of upcoming words in a pluggable fashion. Extensive experimentation demonstrates the remarkable effectiveness and pluggability of our method for fine-grained manipulation of LLMs’ personalities.

We use cookies to improve your experience and performance on our website. You can learn more at Politica sulla privacy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
it_IT