YouZum

Response-Level Rewards Are All You Need for Online Reinforcement Learning in LLMs: A Mathematical Perspective

arXiv:2506.02553v1 Announce Type: cross
Abstract: We study a common challenge in reinforcement learning for large language models (LLMs): the Zero-Reward Assumption, where non-terminal actions (i.e., intermediate token generations) receive zero task-specific immediate reward, while only the final token receives a reward for the entire response. This assumption arises frequently in practice, as precise token-level rewards are often difficult or infeasible to obtain in LLM applications. In this work, we provide a unifying theoretical perspective. We introduce the Trajectory Policy Gradient Theorem, which shows that the policy gradient based on true, unknown token-level rewards can be unbiasedly estimated using only a response-level reward model, regardless of whether the Zero-Reward Assumption holds or not, for algorithms in the REINFORCE and Actor-Critic families. This result reveals that widely used methods such as PPO, GRPO, ReMax, and RLOO inherently possess the capacity to model token-level reward signals, offering a theoretical justification for response-level reward approaches. Our findings pave the way for more practical, efficient LLM fine-tuning, allowing developers to treat training algorithms as black boxes and focus on improving the response-level reward model with auxiliary sub-models. We also offer a detailed analysis of popular RL and non-RL methods, comparing their theoretical foundations and practical advantages across common LLM tasks. Finally, we propose a new algorithm: Token-Reinforced Policy Optimization (TRePO), a theoretically grounded method that is simpler than PPO, matches GRPO in memory efficiency, and holds promise for broad applicability.

We use cookies to improve your experience and performance on our website. You can learn more at Politica sulla privacy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
it_IT