YouZum

Annotation and modeling of emotions in a textual corpus: an evaluative approach

arXiv:2509.01260v1 Announce Type: new
Abstract: Emotion is a crucial phenomenon in the functioning of human beings in society. However, it remains a widely open subject, particularly in its textual manifestations. This paper examines an industrial corpus manually annotated following an evaluative approach to emotion. This theoretical framework, which is currently underutilized, offers a different perspective that complements traditional approaches. Noting that the annotations we collected exhibit significant disagreement, we hypothesized that they nonetheless follow stable statistical trends. Using language models trained on these annotations, we demonstrate that it is possible to model the labeling process and that variability is driven by underlying linguistic features. Conversely, our results indicate that language models seem capable of distinguishing emotional situations based on evaluative criteria.

We use cookies to improve your experience and performance on our website. You can learn more at Politica sulla privacy and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
it_IT