arXiv:2502.09854v2 Announce Type: replace
Abstract: In this work, we investigate how small language models (SLMs) can be scaled to support multimodal search and recommendation use cases while remaining efficient enough for real-time, resource-constrained deployments. We present a framework that combines upside-down reinforcement learning with synthetic data distillation from a large language model (Llama-3) to train a 100M-parameter GPT-2 model for multitask prompt generation. Despite being up to 80 times smaller than state-of-the-art large language models (LLMs), our SLM achieves relevance and diversity scores within 6% of competitive baselines such as Llama-3 8B, Qwen3 8B, and Ministral 8B. These results demonstrate that SLMs can effectively handle multimodal search and recommendation tasks, while dramatically reducing inference latency and memory overhead. Our study highlights the potential of lightweight models as practical engines for scalable multimodal discovery, bridging the gap between cutting-edge research and real-world multimodal applications such as media recommendations and creative content generation.