YouZum

TwinVoice: A Multi-dimensional Benchmark Towards Digital Twins via LLM Persona Simulation

arXiv:2510.25536v1 Announce Type: new
Abstract: Large Language Models (LLMs) are exhibiting emergent human-like abilities and are increasingly envisioned as the foundation for simulating an individual’s communication style, behavioral tendencies, and personality traits. However, current evaluations of LLM-based persona simulation remain limited: most rely on synthetic dialogues, lack systematic frameworks, and lack analysis of the capability requirement. To address these limitations, we introduce TwinVoice, a comprehensive benchmark for assessing persona simulation across diverse real-world contexts. TwinVoice encompasses three dimensions: Social Persona (public social interactions), Interpersonal Persona (private dialogues), and Narrative Persona (role-based expression). It further decomposes the evaluation of LLM performance into six fundamental capabilities, including opinion consistency, memory recall, logical reasoning, lexical fidelity, persona tone, and syntactic style. Experimental results reveal that while advanced models achieve moderate accuracy in persona simulation, they still fall short of capabilities such as syntactic style and memory recall. Consequently, the average performance achieved by LLMs remains considerably below the human baseline.

We use cookies to improve your experience and performance on our website. You can learn more at Politique de confidentialité and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
fr_FR