YouZum

Narrowing the Gap: Supervised Fine-Tuning of Open-Source LLMs as a Viable Alternative to Proprietary Models for Pedagogical Tools

arXiv:2507.05305v1 Announce Type: cross
Abstract: Frontier Large language models (LLMs) like ChatGPT and Gemini can decipher cryptic compiler errors for novice programmers, but their computational scale, cost, and tendency to over-assist make them problematic for widespread pedagogical adoption. This work demonstrates that smaller, specialised language models, enhanced via Supervised Fine-Tuning (SFT), present a more viable alternative for educational tools. We utilise a new dataset of 40,000 C compiler error explanations, derived from real introductory programming (CS1/2) student-generated programming errors, which we used to fine-tune three open-source models: Qwen3-4B, Llama-3.1-8B, and Qwen3-32B. We performed a dual evaluation, combining expert human reviews with a large-scale automated analysis of 8,000 responses using a validated LLM-as-judge ensemble. Our results show that SFT significantly boosts the pedagogical quality of smaller models, achieving performance comparable to much larger models. We analyse the trade-offs between model size and quality, confirming that fine-tuning compact, efficient models on high-quality, domain-specific data is a potent strategy for creating specialised models to drive educational tools. We provide a replicable methodology to foster broader access to generative AI capabilities in educational contexts.

We use cookies to improve your experience and performance on our website. You can learn more at Politique de confidentialité and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
fr_FR