YouZum

LLaPa: A Vision-Language Model Framework for Counterfactual-Aware Procedural Planning

arXiv:2507.08496v1 Announce Type: new
Abstract: While large language models (LLMs) have advanced procedural planning for embodied AI systems through strong reasoning abilities, the integration of multimodal inputs and counterfactual reasoning remains underexplored. To tackle these challenges, we introduce LLaPa, a vision-language model framework designed for multimodal procedural planning. LLaPa generates executable action sequences from textual task descriptions and visual environmental images using vision-language models (VLMs). Furthermore, we enhance LLaPa with two auxiliary modules to improve procedural planning. The first module, the Task-Environment Reranker (TER), leverages task-oriented segmentation to create a task-sensitive feature space, aligning textual descriptions with visual environments and emphasizing critical regions for procedural execution. The second module, the Counterfactual Activities Retriever (CAR), identifies and emphasizes potential counterfactual conditions, enhancing the model’s reasoning capability in counterfactual scenarios. Extensive experiments on ActPlan-1K and ALFRED benchmarks demonstrate that LLaPa generates higher-quality plans with superior LCS and correctness, outperforming advanced models. The code and models are available https://github.com/sunshibo1234/LLaPa.

fr_FR