YouZum

DEER: Disentangled Mixture of Experts with Instance-Adaptive Routing for Generalizable Machine-Generated Text Detection

arXiv:2511.01192v1 Announce Type: new
Abstract: Detecting machine-generated text (MGT) has emerged as a critical challenge, driven by the rapid advancement of large language models (LLMs) capable of producing highly realistic, human-like content. However, the performance of current approaches often degrades significantly under domain shift. To address this challenge, we propose a novel framework designed to capture both domain-specific and domain-general MGT patterns through a two-stage Disentangled mixturE-of-ExpeRts (DEER) architecture. First, we introduce a disentangled mixture-of-experts module, in which domain-specific experts learn fine-grained, domain-local distinctions between human and machine-generated text, while shared experts extract transferable, cross-domain features. Second, to mitigate the practical limitation of unavailable domain labels during inference, we design a reinforcement learning-based routing mechanism that dynamically selects the appropriate experts for each input instance, effectively bridging the train-inference gap caused by domain uncertainty. Extensive experiments on five in-domain and five out-of-domain benchmark datasets demonstrate that DEER consistently outperforms state-of-the-art methods, achieving average F1-score improvements of 1.39% and 5.32% on in-domain and out-of-domain datasets respectively, along with accuracy gains of 1.35% and 3.61% respectively. Ablation studies confirm the critical contributions of both disentangled expert specialization and adaptive routing to model performance.

We use cookies to improve your experience and performance on our website. You can learn more at Politique de confidentialité and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
fr_FR