YouZum

Credal Transformer: A Principled Approach for Quantifying and Mitigating Hallucinations in Large Language Models

arXiv:2510.12137v1 Announce Type: new
Abstract: Large Language Models (LLMs) hallucinate, generating factually incorrect yet confident assertions. We argue this stems from the Transformer’s Softmax function, which creates “Artificial Certainty” by collapsing ambiguous attention scores into a single probability distribution, discarding uncertainty information at each layer. To fix this, we introduce the Credal Transformer, which replaces standard attention with a Credal Attention Mechanism (CAM) based on evidential theory. CAM produces a “credal set” (a set of distributions) instead of a single attention vector, with the set’s size directly measuring model uncertainty. We implement this by re-conceptualizing attention scores as evidence masses for a Dirichlet distribution: sufficient evidence recovers standard attention, while insufficient evidence yields a diffuse distribution, representing ambiguity. Empirically, the Credal Transformer identifies out-of-distribution inputs, quantifies ambiguity, and significantly reduces confident errors on unanswerable questions by abstaining. Our contribution is a new architecture to mitigate hallucinations and a design paradigm that integrates uncertainty quantification directly into the model, providing a foundation for more reliable AI.

We use cookies to improve your experience and performance on our website. You can learn more at Politique de confidentialité and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
fr_FR