YouZum

Trustworthy Data-driven Chronological Age Estimation from Panoramic Dental Images

arXiv:2601.12960v1 Announce Type: new
Abstract: Integrating deep learning into healthcare enables personalized care but raises trust issues due to model opacity. To improve transparency, we propose a system for dental age estimation from panoramic images that combines an opaque and a transparent method within a natural language generation (NLG) module. This module produces clinician-friendly textual explanations about the age estimations, designed with dental experts through a rule-based approach. Following the best practices in the field, the quality of the generated explanations was manually validated by dental experts using a questionnaire. The results showed a strong performance, since the experts rated 4.77+/-0.12 (out of 5) on average across the five dimensions considered. We also performed a trustworthy self-assessment procedure following the ALTAI checklist, in which it scored 4.40+/-0.27 (out of 5) across seven dimensions of the AI Trustworthiness Assessment List.

We use cookies to improve your experience and performance on our website. You can learn more at Política de privacidad and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
es_ES