YouZum

SwiftMem: Fast Agentic Memory via Query-aware Indexing

arXiv:2601.08160v1 Announce Type: new
Abstract: Agentic memory systems have become critical for enabling LLM agents to maintain long-term context and retrieve relevant information efficiently. However, existing memory frameworks suffer from a fundamental limitation: they perform exhaustive retrieval across the entire storage layer regardless of query characteristics. This brute-force approach creates severe latency bottlenecks as memory grows, hindering real-time agent interactions. We propose SwiftMem, a query-aware agentic memory system that achieves sub-linear retrieval through specialized indexing over temporal and semantic dimensions. Our temporal index enables logarithmic-time range queries for time-sensitive retrieval, while the semantic DAG-Tag index maps queries to relevant topics through hierarchical tag structures. To address memory fragmentation during growth, we introduce an embedding-tag co-consolidation mechanism that reorganizes storage based on semantic clusters to improve cache locality. Experiments on LoCoMo and LongMemEval benchmarks demonstrate that SwiftMem achieves 47$times$ faster search compared to state-of-the-art baselines while maintaining competitive accuracy, enabling practical deployment of memory-augmented LLM agents.

We use cookies to improve your experience and performance on our website. You can learn more at Política de privacidad and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
es_ES