YouZum

SpecDiff-2: Scaling Diffusion Drafter Alignment For Faster Speculative Decoding

arXiv:2511.00606v1 Announce Type: new
Abstract: Speculative decoding has become the standard approach for accelerating Large Language Model (LLM) inference. It exploits a lossless draft-then-verify procedure to circumvent the latency of autoregressive decoding, achieving impressive speed-ups. Yet, current speculative decoding approaches remain limited by two fundamental bottlenecks: (1) the autoregressive dependency during drafting which limits parallelism, and (2) frequent rejections of draft tokens caused by misalignment between the draft and verify models. This paper proposes SpecDiff-2, a novel framework to jointly address these two bottlenecks. It leverages discrete diffusion as a non-autoregressive drafter to address bottleneck (1) and develops novel techniques to calibrate discrete diffusion drafters with autoregressive verifiers, addressing bottleneck (2). Experimental results across a comprehensive benchmark suite show that SpecDiff-2 achieves a new state-of-the-art across reasoning, coding, and mathematical benchmarks, improving tokens-per-second by up to an average of +55% over previous baselines and obtaining up to 5.5x average speed-up over standard decoding, without any loss of accuracy.

We use cookies to improve your experience and performance on our website. You can learn more at Política de privacidad and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
es_ES