YouZum

EmoDebt: Bayesian-Optimized Emotional Intelligence for Strategic Agent-to-Agent Debt Recovery

arXiv:2503.21080v5 Announce Type: replace
Abstract: The emergence of autonomous Large Language Model (LLM) agents has created a new ecosystem of strategic, agent-to-agent interactions. However, a critical challenge remains unaddressed: in high-stakes, emotion-sensitive domains like debt collection, LLM agents pre-trained on human dialogue are vulnerable to exploitation by adversarial counterparts who simulate negative emotions to derail negotiations. To fill this gap, we first contribute a novel dataset of simulated debt recovery scenarios and a multi-agent simulation framework. Within this framework, we introduce EmoDebt, an LLM agent architected for robust performance. Its core innovation is a Bayesian-optimized emotional intelligence engine that reframes a model’s ability to express emotion in negotiation as a sequential decision-making problem. Through online learning, this engine continuously tunes EmoDebt’s emotional transition policies, discovering optimal counter-strategies against specific debtor tactics. Extensive experiments on our proposed benchmark demonstrate that EmoDebt achieves significant strategic robustness, substantially outperforming non-adaptive and emotion-agnostic baselines across key performance metrics, including success rate and operational efficiency. By introducing both a critical benchmark and a robustly adaptive agent, this work establishes a new foundation for deploying strategically robust LLM agents in adversarial, emotion-sensitive debt interactions.

We use cookies to improve your experience and performance on our website. You can learn more at Política de privacidad and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
es_ES