YouZum

Efficient Trie-based Biasing using K-step Prediction for Rare Word Recognition

arXiv:2509.09196v1 Announce Type: new
Abstract: Contextual biasing improves rare word recognition of ASR models by prioritizing the output of rare words during decoding. A common approach is Trie-based biasing, which gives “bonus scores” to partial hypothesis (e.g. “Bon”) that may lead to the generation of the rare word (e.g. “Bonham”). If the full word (“Bonham”) isn’t ultimately recognized, the system revokes those earlier bonuses. This revocation is limited to beam search and is computationally expensive, particularly for models with large decoders. To overcome these limitations, we propose adapting ASR models to look ahead and predict multiple steps at once. This avoids the revocation step entirely by better estimating whether a partial hypothesis will lead to the generation of the full rare word. By fine-tuning Whisper with only 10 hours of synthetic data, our method reduces the word error rate on the NSC Part 2 test set from 30.86% to 12.19%.

We use cookies to improve your experience and performance on our website. You can learn more at Política de privacidad and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
es_ES