YouZum

The Learning Dynamics of Subword Segmentation for Morphologically Diverse Languages

arXiv:2511.09197v1 Announce Type: new
Abstract: Subword segmentation is typically applied in preprocessing and stays fixed during training. Alternatively, it can be learned during training to optimise the training objective. In this paper we study the learning dynamics of subword segmentation: if a language model can dynamically optimise tokenisation, how do its subwords evolve during pretraining and finetuning? To explore this, we extend the subword segmental language model (SSLM), a framework for learning subwords during training, to support pretraining and finetuning. We train models for three typologically diverse languages to study learning dynamics across the morphological spectrum: Isi-Xhosa is conjunctive (long word forms composed of many morphemes), Setswana is disjunctive (morphemes written as separate words), and English represents a typological middle ground. We analyse subword dynamics from a linguistic perspective, tracking morphology, productivity, and fertility. We identify four stages of subword learning, with the morphologically complex isi-Xhosa exhibiting greater instability. During finetuning, subword boundaries shift to become finer-grained. Lastly, we show that learnable subwords offers a promising approach to improve text generation and cross-lingual transfer for low-resource, morphologically complex languages.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE