YouZum

RefactorCoderQA: Benchmarking LLMs for Multi-Domain Coding Question Solutions in Cloud and Edge Deployment

arXiv:2509.10436v2 Announce Type: replace
Abstract: To optimize the reasoning and problem-solving capabilities of Large Language Models (LLMs), we propose a novel cloud-edge collaborative architecture that enables a structured multi-agent prompting framework. This framework comprises three specialized components: GuideLLM, a lightweight model deployed at the edge to provide methodological guidance; SolverLLM, a more powerful model hosted in the cloud and responsible for generating code solutions; and JudgeLLM, an automated evaluator for assessing solution correctness and quality. To evaluate and demonstrate the effectiveness of this architecture in realistic settings, we introduce RefactorCoderQA, a comprehensive benchmark designed to evaluate and enhance the performance of LLMs across multi-domain coding tasks. Motivated by the limitations of existing benchmarks, RefactorCoderQA systematically covers multiple technical domains, including Software Engineering, Data Science, Machine Learning, and Natural Language Processing, using authentic coding challenges sourced from Stack Overflow. We propose RefactorCoder-MoE, a fine-tuned mixture-of-experts (MoE) code language model based on DeepSeek-Coder-7B-Instruct, adapted to the RefactorCoderQA benchmark using QLoRA for domain-specific coding question answering. Extensive experiments demonstrate that RefactorCoder-MoE achieves strong and competitive performance, significantly outperforming all evaluated open-source and commercial baselines, with an overall accuracy of 76.84%.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE