YouZum

MALLM: Multi-Agent Large Language Models Framework

arXiv:2509.11656v1 Announce Type: cross
Abstract: Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Huggingface dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM is tailored towards researchers and provides a window into the heart of multi-agent debate, facilitating the understanding of its components and their interplay.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE