YouZum

Localized LoRA: A Structured Low-Rank Approximation for Efficient Fine-Tuning

arXiv:2506.00236v2 Announce Type: replace-cross
Abstract: Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, offer compact and effective alternatives to full model fine-tuning by introducing low-rank updates to pre-trained weights. However, most existing approaches rely on global low rank structures, which can overlook spatial patterns spread across the parameter space. In this work, we propose Localized LoRA, a generalized framework that models weight updates as a composition of low-rank matrices applied to structured blocks of the weight matrix. This formulation enables dense, localized updates throughout the parameter space without increasing the total number of trainable parameters. We provide a formal comparison between global, diagonal-local, and fully localized low-rank approximations, and show that our method consistently achieves lower approximation error under matched parameter budgets. Experiments on both synthetic and practical settings demonstrate that Localized LoRA offers a more expressive and adaptable alternative to existing methods, enabling efficient fine-tuning with improved performance.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE