YouZum

Integral Transformer: Denoising Attention, Not Too Much Not Too Little

arXiv:2508.18387v1 Announce Type: new
Abstract: Softmax self-attention often assigns disproportionate weight to semantically uninformative tokens such as special tokens and punctuation, a phenomenon known as attention noise. While recent methods like Cog Attention and the Differential Transformer have addressed this by introducing negative attention scores, they risk discarding useful information. In this paper, we propose the Integral Transformer, a novel self-attention mechanism that denoises attention by integrating signals sampled from the logit distribution. Our approach mitigates noise while preserving the contributions of special tokens critical for model performance. Extensive experiments demonstrate that our model outperforms vanilla, Cog, and Differential attention variants on well-established knowledge and reasoning language benchmarks. Moreover, our analysis reveals that employing vanilla self-attention in the lower Transformer layers enhances performance and that the Integral Transformer effectively balances attention distributions and reduces rank collapse in upper layers.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE